Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 24(7): 1240-1253, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35611757

RESUMO

Climate change is expected to increase the frequency and intensity of summer droughts. Sufficient drought resistance, the ability to acclimate to and/or recover after drought, is thus crucial for forest tree species. However, studies on the hydraulics of mature trees during and after drought in natura are scarce. In this study, we analysed trunk water content (electrical resistivity: ER) and further hydraulic (water potential, sap flow density, specific hydraulic conductivity, vulnerability to embolism) as well as wood anatomical traits (tree ring width, conduit diameter, conduit wall reinforcement) of drought-stressed (artificially induced summer drought via throughfall-exclusion) and unstressed Picea abies and Fagus sylvatica trees. In P. abies, ER indicated a strong reduction in trunk water content after 5 years of summer drought, corresponding to significantly lower pre-dawn leaf water potential and xylem sap flow density. Vulnerability to embolism tended to be higher in drought-stressed trees. In F. sylvatica, only small differences between drought-stressed and control trees were observed. Re-watering led to a rapid increase in water potentials and xylem sap flow of both drought-stressed trees, and to increased growth rates in the next growing season. ER analyses revealed lower trunk water content in P. abies trees growing on throughfall-exclusion plots even 1 year after re-watering, indicating a limited capacity to restore internal water reserves. Results demonstrated that P. abies is more susceptible to recurrent summer drought than F. sylvatica, and can exhibit long-lasting and pronounced legacy effects in trunk water reserves.


Assuntos
Abies , Fagus , Picea , Pinus , Secas , Estações do Ano , Árvores , Água
2.
Trees (Berl West) ; 27(3): 707-715, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23794789

RESUMO

Lammas shoots are flushes formed by some woody species later in the growing season. Having less time to develop, tissue formation is suggested to be incomplete leading to a higher peridermal water loss during consecutive months. In this study, we analysed morphological and anatomical parameters, peridermal conductance to water vapour and the level of native embolism in mid-winter and late-winter of lammas shoots and normal spring shoots of the apple varieties Malus domestica 'Gala' and 'Nicoter'. Lammas shoots showed a significantly higher shoot cross-sectional area due to larger pith and corticular parenchyma areas. In contrast, phloem was significantly thicker in spring shoots. No pronounced differences were observed in xylem and collenchyma thickness or mean hydraulic conduit diameter. The phellem of spring shoots was composed of more suberinised cells compared to lammas shoots, which led to a significantly higher peridermal conductance in the latter. The amount of native embolism in mid-winter did not differ between shoot types, but in late-winter lammas shoots were more embolised than spring shoots. Data show that the restricted vegetation period of lammas shoots affects their development and, in consequence, their transpiration shield. This may also pose a risk for winter desiccation.

3.
Clin Microbiol Infect ; 17(2): 235-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20384708

RESUMO

To evaluate the clinical reliability of two rapid influenza detection tests (RIDTs), we analyzed 107 specimens from patients with clinically suspected pandemic influenza A/H1N1v by these tests as well as by real-time PCR as a standard. Both RIDTs had a moderate sensitivity (28-32%), a high specificity (93-99%) and a negative predictive value of 80%. These results will impact on the clinical management and isolation precautions in patients with suspected infection. Although a positive RITD is mostly confirmatory, a negative result in the presence of high clinical likelihood of infection should be interpreted with caution and be re-evaluated by PCR.


Assuntos
Antígenos Virais/análise , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Virologia/métodos , Áustria , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
4.
J Exp Bot ; 61(12): 3385-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20551085

RESUMO

The Cavitron technique facilitates time and material saving for vulnerability analysis. The use of rotors with small diameters leads to high water pressure gradients (DeltaP) across samples, which may cause pit aspiration in conifers. In this study, the effect of pit aspiration on Cavitron measurements was analysed and a modified 'conifer method' was tested which avoids critical (i.e. pit aspiration inducing) DeltaP. Four conifer species were used (Juniperus communis, Picea abies, Pinus sylvestris, and Larix decidua) for vulnerability analysis based on the standard Cavitron technique and the conifer method. In addition, DeltaP thresholds for pit aspiration were determined and water extraction curves were constructed. Vulnerability curves obtained with the standard method showed generally a less negative P for the induction of embolism than curves of the conifer method. Differences were species-specific with the smallest effects in Juniperus. Larix showed the most pronounced shifts in P(50) (pressure at 50% loss of conductivity) between the standard (-1.5 MPa) and the conifer (-3.5 MPa) methods. Pit aspiration occurred at the lowest DeltaP in Larix and at the highest in Juniperus. Accordingly, at a spinning velocity inducing P(50), DeltaP caused only a 4% loss of conductivity induced by pit aspiration in Juniperus, but about 60% in Larix. Water extraction curves were similar to vulnerability curves indicating that spinning itself did not affect pits. Conifer pit aspiration can have major influences on Cavitron measurements and lead to an overestimation of vulnerability thresholds when a small rotor is used. Thus, the conifer method presented here enables correct vulnerability analysis by avoiding artificial conductivity losses.


Assuntos
Traqueófitas/fisiologia , Água/análise , Centrifugação/métodos , Pressão , Água/fisiologia
5.
Protoplasma ; 243(1-4): 145-52, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19533300

RESUMO

Frost resistance of sprouting Picea abies shoots is insufficient for survival of naturally occurring late frosts. The cellular changes during sprouting appeared to be responsible for frost damage as frost events that damaged sprouting shoots did not damage older needles and stems. Whilst resting buds showed initial frost damage at -15.0 degrees C, 20 days later, current year's growth was damaged at -5.6 degrees C. The decrease in frost resistance in sprouting shoots of P. abies was accompanied by a significant reduction of the cellular solute concentration, indicated by much less negative Psi(oSAT) values (increase from -2.8 to -1.2 MPa). psi(oSAT) decreased again after the final cell volume was reached and cell wall thickening began. After bud break, ice nucleation temperature increased from -4.7 degrees C to -1.5 degrees C. This increase was probably caused by the loss of bud scales, the onset of expansion growth of the central cylinder and the development of vascular tissue permitting the spread of ice from the stem into the growing needles. The onset of mesophyll cell wall thickening coincided with the lowest frost resistances. Cell wall thickening caused an increase in the modulus of elasticity, epsilon, indicating a decrease in tissue elasticity and after that frost resistance increased again. Metabolic and cytological changes that evidently leave little leeway for frost hardening are responsible for the low frost resistance in current year's growth of P. abies. This low frost resistance will be significant in the future as the risk of frost damage due to earlier bud break is anticipated to even further increase.


Assuntos
Congelamento , Picea/anatomia & histologia , Picea/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Clima , Temperatura
6.
Tree Physiol ; 24(3): 331-7, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14704142

RESUMO

Frost resistance and ice nucleation temperatures of leaves, from bud swelling until after full expansion, were measured in situ for five major woody timberline species with recently developed field freezing equipment. Frost resistance determined in situ on leaves of attached twigs was significantly higher than values determined on detached leaves in laboratory tests (e.g., the temperature at which incipient frost damage was observed (LTi) was 1.2 degrees C higher for detached leaves than for attached leaves of Picea abies (L.) Karst.). Frost resistance of leaves of all species changed significantly during shoot expansion (e.g., changes of 7.2 and 11 degrees C for Rhododendron ferrugineum L. and Larix decidua Mill., respectively). Expanding leaves (between 0 and 60% of full expansion) were the most sensitive to frost, with LTi values ranging from -3.4 degrees C in R. ferrugineum to -6.3 degrees C in L. decidua. Among the studied species, P. abies and R. ferrugineum were the most frost sensitive throughout the shoot elongation period. In situ freezing patterns of leaves of attached twigs also differed from those of leaves of excised twigs. During leaf expansion, two distinct freezing exotherms were always registered in situ. The first freezing event (E1, high-temperature exotherm) was recorded at -1.5 +/- 0.2 degrees C and reflected extracellular ice formation. Exposure of leaves to temperatures at which E1 occurred was, in all cases, noninjurious. The low-temperature exotherm (E2) mostly coincided with frost damage, except for some stages of leaf expansion in R. ferrugineum and P. abies, indicating that in situ freezing exotherms were not accurate estimators of frost damage in these species.


Assuntos
Árvores/fisiologia , Clima Frio , Congelamento , Larix/crescimento & desenvolvimento , Larix/fisiologia , Picea/crescimento & desenvolvimento , Picea/fisiologia , Folhas de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Rhododendron/crescimento & desenvolvimento , Rhododendron/fisiologia , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA