Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2214921120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812200

RESUMO

Mutant KRAS is a major driver of oncogenesis in a multitude of cancers but remains a challenging target for classical small molecule drugs, motivating the exploration of alternative approaches. Here, we show that aggregation-prone regions (APRs) in the primary sequence of the oncoprotein constitute intrinsic vulnerabilities that can be exploited to misfold KRAS into protein aggregates. Conveniently, this propensity that is present in wild-type KRAS is increased in the common oncogenic mutations at positions 12 and 13. We show that synthetic peptides (Pept-ins™) derived from two distinct KRAS APRs could induce the misfolding and subsequent loss of function of oncogenic KRAS, both of recombinantly produced protein in solution, during cell-free translation and in cancer cells. The Pept-ins exerted antiproliferative activity against a range of mutant KRAS cell lines and abrogated tumor growth in a syngeneic lung adenocarcinoma mouse model driven by mutant KRAS G12V. These findings provide proof-of-concept that the intrinsic misfolding propensity of the KRAS oncoprotein can be exploited to cause its functional inactivation.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Mutação , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Dobramento de Proteína
2.
Front Immunol ; 8: 867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824615

RESUMO

The activity of tumor necrosis factor (TNF), a cytokine involved in inflammatory pathologies, can be inhibited by antibodies or trap molecules. Herein, llama-derived variable heavy-chain domains of heavy-chain antibody (VHH, also called Nanobodies™) were generated for the engineering of bivalent constructs, which antagonize the binding of TNF to its receptors with picomolar potencies. Three monomeric VHHs (VHH#1, VHH#2, and VHH#3) were characterized in detail and found to bind TNF with sub-nanomolar affinities. The crystal structures of the TNF-VHH complexes demonstrate that VHH#1 and VHH#2 share the same epitope, at the center of the interaction area of TNF with its TNFRs, while VHH#3 binds to a different, but partially overlapping epitope. These structures rationalize our results obtained with bivalent constructs in which two VHHs were coupled via linkers of different lengths. Contrary to conventional antibodies, these bivalent Nanobody™ constructs can bind to a single trimeric TNF, thus binding with avidity and blocking two of the three receptor binding sites in the cytokine. The different mode of binding to antigen and the engineering into bivalent constructs supports the design of highly potent VHH-based therapeutic entities.

3.
Arthritis Res Ther ; 17: 135, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25994180

RESUMO

INTRODUCTION: The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody® with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. METHODS: ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. RESULTS: ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. CONCLUSIONS: ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Receptores de Interleucina-6/antagonistas & inibidores , Anticorpos de Domínio Único/farmacologia , Animais , Artrite Reumatoide/tratamento farmacológico , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Meia-Vida , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Interleucina-6/imunologia , Macaca fascicularis , Macaca mulatta , Albumina Sérica/imunologia
4.
Antiviral Res ; 92(3): 389-407, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21939690

RESUMO

In 1989, a new type of antibody was identified, first in the sera of dromedaries and later also in all other species of the Camelidae family. These antibodies do not contain a light chain and also lack the first constant heavy domain. Today it is still unclear what the evolutionary advantage of such heavy chain-only antibodies could be. In sharp contrast, the broad applicability of the isolated variable antigen-binding domains (VHH) was rapidly recognized, especially for the development of therapeutic proteins, called Nanobodies(®). Here we summarize first some of the unique characteristics and features of VHHs. These will next be described in the context of different experimental therapeutic applications of Nanobodies against different viruses: HIV, Hepatitis B virus, influenza virus, Respiratory Syncytial virus, Rabies virus, FMDV, Poliovirus, Rotavirus, and PERVs. Next, the diagnostic application of VHHs (Vaccinia virus, Marburg virus and plant Tulip virus X), as well as an industrial application (lytic lactococcal 936 phage) will be described. In addition, the described data show that monovalent Nanobodies can possess unique characteristics not observed with conventional antibodies. The straightforward formatting into bivalent, multivalent, and/or multispecific Nanobodies allowed tailoring molecules for potency and cross-reactivity against viral targets with high sequence diversity.


Assuntos
Anticorpos Antivirais/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Região Variável de Imunoglobulina/uso terapêutico , Viroses/diagnóstico , Viroses/tratamento farmacológico , Vírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Viroses/imunologia
5.
J Virol ; 82(24): 12069-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842738

RESUMO

Members of the Camelidae family produce immunoglobulins devoid of light chains. We have characterized variable domains of these heavy chain antibodies, the VHH, from llamas immunized with human immunodeficiency virus type 1 (HIV-1) envelope protein gp120 in order to identify VHH that can inhibit HIV-1 infection. To increase the chances of isolating neutralizing VHH, we employed a functional selection approach, involving panning of phage libraries expressing the VHH repertoire on recombinant gp120, followed by a competitive elution with soluble CD4. By immunizing with gp120 derived from an HIV-1 subtype B'/C primary isolate, followed by panning on gp120 from HIV-1 isolates of subtypes A, B, and C, we could select for VHH with cross-subtype neutralizing activity. Three VHH able to neutralize HIV-1 primary isolates of subtypes B and C were characterized. These bound to recombinant gp120 with affinities close to the suggested affinity ceiling for in vivo-maturated antibodies and competed with soluble CD4 for this binding, indicating that their mechanism of neutralization involves interacting with the functional envelope spike prior to binding to CD4. The most potent VHH in terms of low 50% inhibitory concentration (IC(50)) and IC(90) values and cross-subtype reactivity was A12. These results indicate that camelid VHH can be potent HIV-1 entry inhibitors. Since VHH are stable and can be produced at a relatively low cost, they may be considered for applications such as HIV-1 microbicide development. Antienvelope VHH might also prove useful in defining neutralizing and nonneutralizing epitopes on HIV-1 envelope proteins, with implications for HIV-1 vaccine design.


Assuntos
Anticorpos/imunologia , Anticorpos/farmacologia , Camelídeos Americanos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Animais , Sítios de Ligação , Antígenos CD4/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Humanos , Proteínas Recombinantes/imunologia
6.
Mol Immunol ; 45(5): 1366-73, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17936360

RESUMO

In this study we constructed two phage libraries displaying non-immunized natural human IgM derived HCDR3 repertoires. One library was structurally constrained by a Gly to Cys substitution at position 104 enabling the formation of a disulfide bridge with the Cys at position 92. Panning of these libraries on an anti-human influenza hemagglutinin (HA) antibody resulted in the selection of 16 different HCDR3 loops displaying different degrees of sequence homology with the HA epitope. The specificity of the HCDR3 loops recovered from the structurally constrained library was confirmed by competition assays using the HA epitope. Only one of these HCDR3 peptides contained Cys104. Structural analysis of these sequences revealed that the loss of Cys104 was associated with an increased preference for the formation of the type I beta-turn required for high affinity binding to the antibody. Affinity studies confirmed that the HCDR3 peptides containing the sequence YDVPDY and Gly104 had affinities in the nanomolar range (K(d)=7.6 nM) comparable to the HA epitope. These findings provided evidence that the recovered HCDR3 sequences may bind to their target in a conformation that is unreachable by the parental antibody from which the HCDR3 was derived. Furthermore, the isolation of target-specific and high affinity binders demonstrates the value of HCDR3 libraries as a source of 'biologically randomized' sequences of human origin for the identification of peptidic lead molecules.


Assuntos
Regiões Determinantes de Complementaridade , Epitopos , Hemaglutininas/imunologia , Cadeias Pesadas de Imunoglobulinas , Influenza Humana/imunologia , Mimetismo Molecular , Peptídeos/imunologia , Sequência de Aminoácidos , Anticorpos , Afinidade de Anticorpos , Humanos , Imunoglobulina M , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/isolamento & purificação , Estrutura Secundária de Proteína
7.
J Immunol Methods ; 320(1-2): 49-57, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17258763

RESUMO

The intrasplenic injection of human peripheral blood mononuclear cells (PBMCs) into severely immune deficient NOD/SCID mice, causes a massive and transient dominant expansion of human B cells in the spleen. This permits the easy isolation of human monoclonal antibodies specific for different antigens by a Kohler and Milstein-based method. Here we studied the human HIV-specific antibody response in the circulation of mice after intrasplenic transfer of PBMC from untreated HIV-infected patients with detectable to high viral load as well as from HAART-treated and from untreated patients, who kept an undetectable viral load (the latter referred to as "natural suppressors"). Excellent B cell expansion was obtained for all PBMC. High level replication of virus was observed after transfer of PBMC of untreated viremic patients only. A strong and multispecific HIV-specific antibody response was observed after transfer of PBMC of untreated viremic patients and natural suppressors. In contrast, only a weak and pauci-specific antibody response was detected in mice reconstituted with PBMC from successfully treated patients. Based on these observations we conclude that the use of the intraspleen mouse model confirmed a) the presence of HIV-specific circulating memory B cells in untreated patients and natural suppressors; b) the nearly complete absence of circulating memory B cells in patients receiving highly active antiretroviral therapy. Using the intraspleen model we generated large numbers of immortalized B cells and isolated two anti-p24 human monoclonal antibodies. We further conclude that the intraspleen huPBL NOD/SCID model is a small animal model useful for the analysis of the antibody response against HIV found in patients.


Assuntos
Especificidade de Anticorpos , Linfócitos B/imunologia , Vias de Administração de Medicamentos , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Modelos Animais , Animais , Linfócitos B/fisiologia , Linfócitos B/virologia , Anticorpos Anti-HIV/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Baço/imunologia , Carga Viral
8.
Arthritis Rheum ; 54(6): 1856-66, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16736523

RESUMO

OBJECTIVE: The advent of tumor necrosis factor (TNF)-blocking drugs has provided rheumatologists with an effective, but highly expensive, treatment for the management of established rheumatoid arthritis (RA). Our aim was to explore preclinically the application of camelid anti-TNF VHH proteins, which are single-domain antigen binding (VHH) proteins homologous to human immunoglobulin V(H) domains, as TNF antagonists in a mouse model of RA. METHODS: Llamas were immunized with human and mouse TNF, and antagonistic anti-TNF VHH proteins were isolated and cloned for bacterial production. The resulting anti-TNF VHH proteins were recombinantly linked to yield bivalent mouse and human TNF-specific molecules. To increase the serum half-life and targeting properties, an anti-serum albumin anti-TNF VHH domain was incorporated into the bivalent molecules. The TNF-neutralizing potential was analyzed in vitro. Mouse TNF-specific molecules were tested in a therapeutic protocol in murine collagen-induced arthritis (CIA). Disease progression was evaluated by clinical scoring and histologic evaluation. Targeting properties were evaluated by 99mTc labeling and gamma camera imaging. RESULTS: The bivalent molecules were up to 500 times more potent than the monovalent molecules. The antagonistic potency of the anti-human TNF VHH proteins exceeded even that of the anti-TNF antibodies infliximab and adalimumab that are used clinically in RA. Incorporation of binding affinity for albumin into the anti-TNF VHH protein significantly prolonged its serum half-life and promoted its targeting to inflamed joints in the murine CIA model of RA. This might explain the excellent therapeutic efficacy observed in vivo. CONCLUSION: These data suggest that because of the flexibility of their format, camelid anti-TNF VHH proteins can be converted into potent therapeutic agents that can be produced and purified cost-effectively.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Experimental/terapia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/uso terapêutico , Fator de Necrose Tumoral alfa/imunologia , Adalimumab , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Camelídeos Americanos/imunologia , Meia-Vida , Cadeias Pesadas de Imunoglobulinas/sangue , Região Variável de Imunoglobulina/sangue , Infliximab , Camundongos , Camundongos Endogâmicos BALB C
9.
J Virol ; 76(15): 7595-606, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12097573

RESUMO

It has been proposed that the ectodomain of human immunodeficiency virus type 1 (HIV-1) gp41 (e-gp41), involved in HIV entry into the target cell, exists in at least two conformations, a pre-hairpin intermediate and a fusion-active hairpin structure. To obtain more information on the structure-sequence relationship in e-gp41, we performed in silico a full single-amino-acid substitution analysis, resulting in a Fold Compatible Database (FCD) for each conformation. The FCD contains for each residue position in a given protein a list of values assessing the energetic compatibility (ECO) of each of the 20 natural amino acids at that position. Our results suggest that FCD predictions are in good agreement with the sequence variation observed for well-validated e-gp41 sequences. The data show that at a minECO threshold value of 5 kcal/mol, about 90% of the observed patient sequence variation is encompassed by the FCD predictions. Some inconsistent FCD predictions at N-helix positions packing against residues of the C helix suggest that packing of both peptides may involve some flexibility and may be attributed to an altered orientation of the C-helical domain versus the N-helical region. The permissiveness of sequence variation in the C helices is in agreement with FCD predictions. Comparison of N-core and triple-hairpin FCDs suggests that the N helices may impose more constraints on sequence variation than the C helices. Although the observed sequences of e-gp41 contain many multiple mutations, our method, which is based on single-point mutations, can predict the natural sequence variability of e-gp41 very well.


Assuntos
Sequência de Aminoácidos , Variação Genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/classificação , Conformação Proteica , Substituição de Aminoácidos , Bases de Dados Factuais , Genótipo , Proteína gp41 do Envelope de HIV/química , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Fusão de Membrana , Dados de Sequência Molecular , Fenótipo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA