Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38785703

RESUMO

In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection of epirubicin (EP) was proposed, which utilized a UiO-66-NH2/GO nanocomposite-modified screen-printed graphite electrode (UiO-66-NH2/GO/SPGE). The prepared UiO-66-NH2/GO nanocomposite improved the electrochemical performance of the SPGE towards the redox reaction of EP. Under optimized experimental conditions, this sensor demonstrates a remarkable limit of detection (LOD) of 0.003 µM and a linear dynamic range from 0.008 to 200.0 µM, providing a highly capable platform for sensing EP. Furthermore, the simultaneous electro-catalytic oxidation of EP and topotecan (TP) was investigated at the UiO-66-NH2/GO/SPGE surface utilizing differential pulse voltammetry (DPV). DPV measurements revealed the presence of two distinct oxidation peaks of EP and TP, with a peak potential separation of 200 mV. Finally, the UiO-66-NH2/GO/SPGE sensor was successfully utilized for the quantitative analysis of EP and TP in pharmaceutical injection, yielding highly satisfactory results.


Assuntos
Antineoplásicos , Técnicas Eletroquímicas , Eletrodos , Epirubicina , Grafite , Nanocompostos , Topotecan , Epirubicina/análise , Topotecan/análise , Grafite/química , Antineoplásicos/análise , Técnicas Biossensoriais , Estruturas Metalorgânicas/química , Limite de Detecção , Humanos , Oxirredução , Ácidos Ftálicos
2.
ADMET DMPK ; 12(2): 391-402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720927

RESUMO

Background and purpose: Neurotransmitters are chemical messengers that enhance and balance signals between cells and target cells in the body. They are vital to the body's ability to function. Epinephrine is one of the most essential catecholamine neurotransmitters with an important biological and pharmacological role in the mammalian central nervous system. Therefore, it is very important to develop sensitive, simple, and fast methods for the determination of this compound. Experimental approach: In the present work, a glassy carbon electrode (GCE) modified with the cerium oxide-zinc oxide (CeO2-ZnO) nanocomposite (CeO2-ZnO/GCE) was developed for the sensitive and quick detection of epinephrine. The CeO2-ZnO nanocomposite was prepared by hydrothermal method. Electrochemical methods such as voltammetry and chronoamperometry techniques were used to investigate the performance of the developed sensor. Key results: The resulting CeO2-ZnO/GCE showed a remarkable response towards the determination of epinephrine. The electrochemical sensor demonstrated a wide dynamic linear range from 0.1 to 900.0 µM for analysis of epinephrine. The LOD equalled 0.03 µM for epinephrine. In addition, the electrochemical sensor had good feasibility for concurrent detection of epinephrine and theophylline. Furthermore, experimental outputs indicated that the oxidation peaks of epinephrine and theophylline were separated by a 685 mV difference between the two peaks in PBS at a pH of 7.0. Also, an electrochemical sensor has been employed to analyse epinephrine in real samples (urine and epinephrine Injection). Conclusion: The good and acceptable analytical performance of the developed sensor can provide a promising tool for the analysis of epinephrine in real samples.

3.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398949

RESUMO

D-penicillamine (D-PA) is a sulfur-containing drug that has been used for various health conditions. However, like any medication, overdosing on D-PA can have adverse effects and may require additional treatment. Therefore, developing simple and sensitive methods for sensing D-PA can play a crucial role in improving its efficacy and reducing its side effects. Sensing technologies, such as electrochemical sensors, can enable accurate and real-time measurement of D-PA concentrations. In this work, we developed a novel electrochemical sensor for detecting D-PA by modifying a carbon paste electrode (CPE) with a multi-walled carbon nanotube-Co3O4 nanocomposite, benzoyl-ferrocene (BF), and ionic liquid (IL) (MWCNT-Co3O4/BF/ILCPE). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CHA) were employed to explore the electrochemical response of D-PA on the developed sensor, the results of which verified a commendable electrochemical performance towards D-PA. Under optimized conditions, the developed sensor demonstrated a rapid response to D-PA with a linear dynamic range of 0.05 µM-100.0 µM, a low detection limit of 0.015 µM, and a considerable sensitivity of 0.179 µA µM-1. Also, the repeatability, stability, and reproducibility of the MWCNT-Co3O4/BF/ILCPE sensor were studied and showed good characteristics. In addition, the detection of D-PA in pharmaceutical and biological matrices yielded satisfactory recoveries and relative standard deviation (RSD) values.

4.
ADMET DMPK ; 11(3): 361-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829321

RESUMO

Background and purpose: Sensitive analytical determination of folic acid is important in clinical laboratories due to its versatile biological functions. Experimental approach: A simple folic acid sensor was successfully fabricated based on two-dimensional transition metal dichalcogenide MoS2 modified carbon ionic liquid paste electrode (MoS2-CILPE). The electrochemical properties of the fabricated electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry. Key results: The fabricated sensor displayed excellent electroactivity towards folic acid using CV. Under optimal conditions (0.1 M PBS (pH 7.0)), the DPV oxidation peak current was proportional to folic acid concentration in the range from 5.0 µM to 100.0 µM with an estimated limit of detection of 1.0 µM and limit of quantification of 5.0 µM. Conclusion: The ability of the sensor for routine analyses was demonstrated by the detection of folic acid present in folic acid tablets and urine samples with appreciable recovery values.

5.
Biomedicines ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37509508

RESUMO

This study addressed the use of manganese dioxide nanorods/graphene oxide nanocomposite (MnO2 NRs/GO) for modifying a glassy carbon electrode (GCE). The modified electrode (MnO2 NRs/GO/GCE) was used as an electrochemical sensor for the determination of hydroquinone (HQ) in water samples. Differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronoamperometry were used for more analysis of the HQ electrochemical behavior. Analyses revealed acceptable electrochemical functions with lower transfer resistance of electrons and greater conductivity of the MnO2 NRs/GO/GCE. The small peak-to-peak separation is an indication of a rapid electron transfer reaction. Therefore, this result is probably related to the effect of the MnO2 NRs/GO nanocomposite on the surface of GCE. In the concentration range of 0.5 µM to 300.0 µM with the detection limit as 0.012 µM, there was linear response between concentration of HQ and the current. The selectivity of the modified electrode was determined by detecting 50.0 µM of HQ in the presence of various interferent molecules. At the end, the results implied the acceptable outcome of the prepared electrode for determining HQ in the water samples.

6.
Chemosphere ; 337: 139369, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392790

RESUMO

Toxic effluents containing azo dyes are discharged from various industries and they adversely affect water resoures, soil and aquatic ecosystems. Also, excessive use of food azo dyes can be carcinogenic, toxic, and adversely affect human health. Therefore, the determination of food azo dyes is significant from the perspective of human health and aquatic organisms. In the present work, nickel-cobalt layered double hydroxide nanosheets were prepared and analyzed by various techniques (field emission-scanning electron microscopy, X-ray diffraction, and Fourier Transform-Infrared spectroscopy). Then, the screen printed graphite electrode modified with nickel-cobalt layered double hydroxide nanosheets was used for the detection of carmoisine. The nickel-cobalt layered double hydroxide nanosheets/screen printed graphite electrode significantly improved the oxidation of carmoisine by increasing the response current and lowering potentials compared to unmodified screen printed graphite electrode. Based on the findings from differential pulse voltammetry, the nickel-cobalt layered double hydroxide nanosheets/screen printed graphite electrode sensor response towards carmoisine was linear (0.3-125.0 µM) with a detection limit of 0.09 µM. A sensitivity of 0.3088 µA µM-1 was achieved. Also, the nickel-cobalt layered double hydroxide nanosheets/screen printed graphite electrode was used for voltammetric detection of carmoisine in the presence of tartrazine. Due to the catalytic activity of prepared layered double hydroxide, the prepared sensor exhibited remarkable separation of the peaks when carmoisine and tartrazine coexist. In addition, the prepared sensor showed good stability. Finally, the proposed sensor had promising applicability for analysis of study analytes in powdered juice and lemon juice, with commendable recoveries between 96.9%-104.8%.


Assuntos
Grafite , Humanos , Grafite/química , Tartrazina , Níquel/química , Ecossistema , Eletrodos , Cobalto/química , Compostos Azo , Hidróxidos/química , Técnicas Eletroquímicas/métodos
7.
Anal Methods ; 15(26): 3196-3205, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37357754

RESUMO

This works presents a novel electrochemical sensor based on the third-generation poly(amidoamine) dendrimer (G3 PAMAM)-functionalized multiwalled carbon nanotube (MWCNT)-modified screen-printed graphite electrode (SPGE) for the simple and sensitive detection of methotrexate (MTX). The carboxylated MWCNTs were covalently functionalized with amino groups of G3 PAMAM and characterized using different techniques. The sensing ability of the designed nanosensor (MWCNTs-PAMAM/SPGE) was tested using differential pulse voltammetry (DPV), chronoamperometry (CHA), linear sweep voltammetry (LSV), and cyclic voltammetry (CV). To investigate the electrocatalytic activity of PAMAM-functionalized MWCNTs, a comparative electrochemical analysis was carried out and it was determined that PAMAM-functionalized MWCNT-modified SPGE showed good electrocatalytic performance for MTX oxidation compared to the unmodified SPGE. The MWCNT-PAMAM/SPGE lead to a reduced overpotential of MTX oxidation of about 300 mV and enhanced current of about 9 µA of the unmodified SPGE. Experiments were performed for the quantitative determination of MTX using the DPV technique. The response peak current linearly related against MTX concentration in the ranges from 0.01 to 110.0 µM and a limit of detection (LOD) equal to 0.003 µM. Also, MWCNT-PAMAM/SPGE exhibits good catalytic ability toward MTX determination in the presence of folic acid (FA), and the separation of their oxidation peaks (peak potential difference = 320 mV) simultaneously detected the above compounds. To prove the applicability of the MWCNT-PAMAM/SPGE sensor, the concentrations of MTX and FA in pharmaceutical products and biological samples were determined. The calculated recoveries were close to 100%, which indicates that the method might be assumed to be accurate.


Assuntos
Dendrímeros , Nanotubos de Carbono , Metotrexato , Ácido Fólico , Nanotubos de Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos
8.
Biosensors (Basel) ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37232874

RESUMO

In this work, we prepared a novel electrochemical sensor for the detection of tramadol based on a UiO-66-NH2 metal-organic framework (UiO-66-NH2 MOF)/third-generation poly(amidoamine) dendrimer (G3-PAMAM dendrimer) nanocomposite drop-cast onto a glassy carbon electrode (GCE) surface. After the synthesis of the nanocomposite, the functionalization of the UiO-66-NH2 MOF by G3-PAMAM was confirmed by various techniques including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The UiO-66-NH2 MOF/PAMAM-modified GCE exhibited commendable electrocatalytic performance toward the tramadol oxidation owing to the integration of the UiO-66-NH2 MOF with the PAMAM dendrimer. According to differential pulse voltammetry (DPV), it was possible to detect tramadol under optimized circumstances in a broad concentration range (0.5 µM-500.0 µM) and a narrow limit of detection (0.2 µM). In addition, the stability, repeatability, and reproducibility of the presented UiO-66-NH2 MOF/PAMAM/GCE sensor were also studied. The sensor also possessed an acceptable catalytic behavior for the tramadol determination in the co-existence of acetaminophen, with the separated oxidation potential of ΔE = 410 mV. Finally, the UiO-66-NH2 MOF/PAMAM-modified GCE exhibited satisfactory practical ability in pharmaceutical formulations (tramadol tablets and acetaminophen tablets).


Assuntos
Dendrímeros , Grafite , Nanocompostos , Tramadol , Acetaminofen , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Composição de Medicamentos , Grafite/química , Nanocompostos/química , Carbono/química , Comprimidos , Técnicas Eletroquímicas/métodos
9.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903373

RESUMO

We constructed two-dimensional NiCo-metal-organic-framework (NiCo-MOF) nanosheets based on a facile protocol and then characterized them using multiple approaches (X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and N2 adsorption/desorption isotherms techniques). As a sensitive electroactive material, the as-fabricated bimetallic NiCo-MOF nanosheets were employed to modify a screen-printed graphite electrode surface (NiCo-MOF/SPGE) for epinine electro-oxidation. According to the findings, there was a great improvement in the current responses of the epinine because of the appreciable electron transfer reaction and catalytic performance of the as-produced NiCo-MOF nanosheets. Differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry were utilized to analyze the electrochemical activity of the epinine on the NiCo-MOF/SPGE. A linear calibration plot was obtained in the broad concentration range (0.07-335.0 µM) with a high sensitivity (0.1173 µA/µM) and a commendable correlation coefficient (0.9997). The limit of detection (S/N = 3) was estimated at 0.02 µM for the epinine. According to findings from DPV, the electrochemical sensor of the NiCo-MOF/SPGE could co-detect epinine and venlafaxine. The repeatability, reproducibility and stability of the NiCo-metal-organic-framework-nanosheets-modified electrode were investigated, and the relative standard deviations obtained indicated that the NiCo-MOF/SPGE had superior repeatability, reproducibility and stability. The as-constructed sensor was successfully applicable in sensing the study analytes in real specimens.

10.
Biosensors (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832010

RESUMO

The current attempt was made to detect the amino acid homocysteine (HMC) using an electrochemical aptasensor. A high-specificity HMC aptamer was used to fabricate an Au nanostructured/carbon paste electrode (Au-NS/CPE). HMC at high blood concentration (hyperhomocysteinemia) can be associated with endothelial cell damage leading to blood vessel inflammation, thereby possibly resulting in atherogenesis leading to ischemic damage. Our proposed protocol was to selectively immobilize the aptamer on the gate electrode with a high affinity to the HMC. The absence of a clear alteration in the current due to common interferants (methionine (Met) and cysteine (Cys)) indicated the high specificity of the sensor. The aptasensor was successful in sensing HMC ranging between 0.1 and 30 µM, with a narrow limit of detection (LOD) as low as 0.03 µM.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Técnicas Eletroquímicas/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Eletrodos
11.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832120

RESUMO

In this paper, a simple strategy was proposed for the analysis of catechol by a carbon paste electrode (CPE) modified with graphene oxide-third generation of poly(amidoamine) dendrimer (GO/G3-PAMAM) nanocomposite and ionic liquid (IL). The synthesis of GO-PAMAM nanocomposite was confirmed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FT-IR) techniques. The prepared modified electrode (GO-PAMAM/ILCPE) exhibited good performance to detect catechol with a notable decrease in overpotential and increase in current compared with an unmodified CPE. Under optimum experimental conditions, GO-PAMAM/ILCPE electrochemical sensors indicated a lower limit of detection (LOD) of 0.034 µM and a linear response in the concentration range of 0.1 to 200.0 µM for the quantitative measurement of catechol in aqueous solutions. In addition, GO-PAMAM/ILCPE sensor exhibited an ability to simultaneously determine catechol and resorcinol. It can be found that catechol and resorcinol could be completely separated on the GO-PAMAM/ILCPE with the differential pulse voltammetry (DPV) technique. Finally, a GO-PAMAM/ILCPE sensor was utilized to detect catechol and resorcinol in water samples with recoveries of 96.2% to 103.3% and relative standard deviations (RSDs) of less than 1.7%.

12.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839047

RESUMO

Recently, transition metal oxides have been considered for various applications due to their unique properties. We present the synthesis of a three-component catalyst consisting of zirconium oxide (ZrO2), nickel oxide (NiO), and reduced graphene oxide (rGO) in the form of ZrO2/NiO/rGO by a simple one-step hydrothermal method. X-ray powder diffraction (XRD), scanning electron microscope (SEM), and bright-field transmission electron microscopy (BF-TEM) analyses were performed to accurately characterize the catalysts. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) analyses were also carried out to investigate the methanol and ethanol alcohol electrooxidation ability of the synthesized nanocatalysts. Inspired by the good potential of metal oxides in the field of catalysts, especially in fuel-cell anodes, we investigated the capability of this catalyst in the methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). After proving the successful synthesis and examining the surface morphology of these materials, detailed electrochemical tests were performed to show the outstanding capability of this new nanocatalyst for use in the anode of alcohol fuel cells. ZrO2/NiO/rGO indicated a current density of 26.6 mA/cm2 at a peak potential of 0.52 V and 99.5% cyclic stability in the MOR and a current density of 17.3 mA/cm2 at a peak potential of 0.52 V and 98.5% cyclic stability in the EOR (at optimal concentration/scan rate 20 mV/s), representing an attractive option for use in the anode of alcoholic fuel cells.

13.
Biosensors (Basel) ; 12(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36354421

RESUMO

The current work was performed to construct a novel electrochemical sensing system for determination of sunset yellow via the modification of screen-printed graphite electrode modified with hierarchical flower-like NiCo2O4 nanoplates (NiCo2O4/SPGE). The prepared material (hierarchical flower-like NiCo2O4 nanoplates) was analyzed by diverse microscopic and spectroscopic approaches for the crystallinity, composition, and morphology. Chronoamperometry, differential pulse voltammetry, linear sweep voltammetry, and cyclic voltammetry were used for determination of the electrochemical behavior of sunset yellow. The as-fabricated sensor had appreciable electro-catalytic performance and current sensitivity in detecting the sunset yellow. There were some advantages for NiCo2O4/SPGE under the optimized circumstances of sunset yellow determination, including a broad dynamic linear between 0.02 and 145.0 µM, high sensitivity of 0.67 µA/(µM.cm2), and a narrow limit of detection of 0.008 µM. The practical applicability of the proposed sensor was verified by determining the sunset yellow in real matrices, with satisfactory recoveries.


Assuntos
Técnicas Eletroquímicas , Grafite , Técnicas Eletroquímicas/métodos , Compostos Azo , Grafite/química , Eletrodos
14.
Micromachines (Basel) ; 13(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363855

RESUMO

A chemically modified carbon paste electrode, based on a CoMOF-graphene oxide (GO) and an ionic liquid of 1-methyl-3-butylimidazolium bromide (CoMOF-GO/1-M,3-BB/CPE), was fabricated for the simultaneous determination of dopamine (DA) and uric acid (UA). The prepared CoMOF/GO nanocomposite was characterized by field emission-scanning electron microscopy (FE-SEM), the X-ray diffraction (XRD) method, a N2 adsorption-desorption isotherm, and an energy dispersive spectrometer (EDS). The electrochemical sensor clearly illustrated catalytic activity towards the redox reaction of dopamine (DA), which can be authenticated by comparing the increased oxidation peak current with the bare carbon paste electrode. The CoMOF-GO/1-M,3-BB/CPE exhibits a wide linear response for DA in the concentration range of 0.1 to 300.0 µM, with a detection limit of 0.04 µM. The oxidation peaks' potential for DA and uric acid (UA) were separated well in the mixture containing the two compounds. This study demonstrated a simple and effective method for detecting DA and UA in real samples.

15.
Nanomaterials (Basel) ; 12(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36234582

RESUMO

This work focuses on the development of a novel electrochemical sensor for the determination of morphine in the presence of diclofenac. The facile synthesis of graphene-Co3O4 nanocomposite was performed. The prepared material (graphene-Co3O4 nanocomposite) was analyzed by diverse microscopic and spectroscopic approaches for its crystallinity, composition, and morphology. Concerning the electrochemical determinations, after drop-casting the as-fabricated graphene-Co3O4 nanocomposite on the surface of a screen-printed graphite electrode (SPGE), their electrochemical performance was scrutinized towards the morphine detection. It was also found that an SPGE modified by a graphene-Co3O4 nanocomposite exhibited better electrocatalytic activity for morphine oxidation than unmodified electrode. Under optimal conditions, the differential pulse voltammetry (DPV) was employed to explore the present sensor (graphene-Co3O4/SPGE), the findings of which revealed a linear dynamic range as broad as 0.02-575.0 µM and a limit of detection (LOD) as narrow as 0.007 µM. The sensitivity was estimated to be 0.4 µM/(µA cm2). Furthermore, the graphene-Co3O4/SPGE sensor demonstrated good analytical efficiency for sensing morphine in the presence of diclofenac in well-spaced anodic peaks. According to the DPV results, this sensor displayed two distinct peaks for the oxidation of morphine and diclofenac with 350 mV potential difference. In addition, the graphene-Co3O4/SPGE was explored for voltammetric determination of diclofenac and morphine in pharmaceutical and biological specimens of morphine ampoule, diclofenac tablet, and urine, where recovery rates close to 100% were recorded for all of the samples.

16.
Biosensors (Basel) ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291009

RESUMO

In this work, Ni-Co layered double hydroxide (Ni-Co LDH) hollow nanostructures were synthesized and characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR) techniques. A screen-printed electrode (SPE) surface was modified with as-fabricated Ni-Co LDHs to achieve a new sensing platform for determination of sumatriptan. The electrochemical behavior of the Ni-Co LDH-modified SPE (Ni-CO LDH/SPE) for sumatriptan determination was investigated using voltammetric methods. Compared with bare SPE, the presence of Ni-Co LDH was effective in the enhancement of electron transport rate between the electrode and analyte, as well as in the significant reduction of the overpotential of sumatriptan oxidation. Differential pulse voltammetry (DPV) was applied to perform a quantitative analysis of sumatriptan. The linearity range was found to be between 0.01 and 435.0 µM. The limits of detection (LOD) and sensitivity were 0.002 ± 0.0001 µM and 0.1017 ± 0.0001 µA/µM, respectively. In addition, the performance of the Ni-CO LDH/SPE for the determination of sumatriptan in the presence of naproxen was studied. Simultaneous analysis of sumatriptan with naproxen showed well-separated peaks leading to a quick and selective analysis of sumatriptan. Furthermore, the practical applicability of the prepared Ni-CO LDH/SPE sensor was examined in pharmaceutical and biological samples with satisfactory recovery results.


Assuntos
Nanoestruturas , Naproxeno , Sumatriptana , Técnicas Eletroquímicas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Hidróxidos/química , Nanoestruturas/química , Eletrodos , Preparações Farmacêuticas
17.
Biosens Bioelectron ; 216: 114674, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36095980

RESUMO

Recent advances in nanotechnology have introduced transition-metal dichalcogenides (TMDs) as inorganic nanomaterials with exceptional properties and structures, suitable also for catalytic applications. The admirable properties of TMDs include the impressive capability of charge transfer, the large surface to volume ratio (S/V), the energy band gap controllable by the number of layers, the strong interaction with light and the mechanical robustness. They are also cost-effective and highly accessible. The unique features and morphology make TMDs excellent candidates for the fabrication of electrochemical sensing devices. This review article was designed to scrutinize the existing applications of nanostructures TMDs to fabricate electrochemical (bio) sensors. The first part focuses on the production techniques and structural properties of TMD nanostructures. The second part examines the progress made for different TMD bio (sensing) schemes and applications in safety of foodstuff, monitoring of environmental contaminations, analysis of pharmacological preparations and clinical determinations. The last part discusses reported challenges and suggestions on promising opportunities.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Elementos de Transição , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Elementos de Transição/química
18.
Food Chem Toxicol ; 167: 113274, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843424

RESUMO

The present research presents synthesis and substantial utilization of a nanocomposite of reduced graphene oxide/polypyrrole nanotubes to modify graphite screen printed electrode (rGO/PPy NTs-GSPE) for detection of sulfite. The nanocomposite preparation was done by hydrothermal protocol, followed by characterization by energy-dispersive X-ray (EDX) and field emission-scanning electron microscopy (FE-SEM). Electrocatalytic sensing of sulfite is carried out using differential pulse voltammetric (DPV), linear sweep voltammetry (LSV), cyclic voltammetric (CV), and Chronoamperometry. Electrochemical behaviors of modified and unmodified electrodes were explored with CV method. In addition, DPV was employed for anodic peak and quantitatively detecting sulfite. The DPV results unveiled a linear response of the sensor to various sulfite contents (0.04-565.0 µM) with a narrow detection limit (0.01 µM) and admirable sensitivity (0.0483 µA/µΜ). The diffusion coefficient (D) for sulfite using rGO/PPy NTs-GSPE, 9.9 × 10-6 cm 2/s was obtained. The sensor was also successful in the sulfite detection in real specimens.


Assuntos
Grafite , Nanocompostos , Nanotubos , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Nanocompostos/química , Polímeros , Pirróis , Sulfitos
19.
Sci Rep ; 12(1): 12145, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840789

RESUMO

Acetamiprid removal was investigated by synthesized Graphene oxide, multiwall nanotube and graphite from an aqueous solution. For this propose, FT-IR, XRD, UV-Vis, SEM and EDS were used to characterize the synthesized nano adsorbents and to determine the removal process. A novel PVC membrane electrode as selective electrode made for determining the concentration of acetamiprid. Batch adsorption studies were conducted to investigate the effect of temperature, initial acetamiprid concentration, adsorbent type and contact time as important adsorption parameters. The maximum equilibrium time was found to be 15 min for graphene oxide. The kinetics studies showed that the adsorption of acetamiprid followed the pseudo-second-order kinetics mechnism. All the adsorption equilibrium data were well fitted to the Langmuir isotherm model and maximum monolayer adsorption capacity 99 percent. Docking data of adsorption have resulted in the same as experimental data in good manner and confirmed the adsorption process.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Eletrodos , Concentração de Íons de Hidrogênio , Cinética , Neonicotinoides , Cloreto de Polivinila , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Nanotechnology ; 33(39)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35688102

RESUMO

We fabricated a new electrochemical 4-aminophenol sensor based on a nanocomposite of Co3O4nanoparticles and graphite carbon nitride (Co3O4@g-C3N4), used for the modification of a screen-printed electrode (Co3O4@g-C3N4/SPE). The synthesized nanocomposite was characterized using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and Fourier transform-infrared (FT-IR) techniques. The electro-oxidation of 4-aminophenol in phosphate buffer solution (pH = 7.0) was investigated via cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The peak current of oxidation in the optimized conditions had a linear relationship with various 4-aminophenol contents (0.05-780.0µM) with a correlation coefficient of 0.9996 and the limit of detection (S/N = 3) of 1.5 × 10-8M. The developed method was successful to determine 4-aminophenol in real specimens, with acceptable outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA