Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405748

RESUMO

Inflammatory Bowel Disease ( IBD ) is a chronic and often debilitating autoinflammatory condition, with an increasing incidence in children. Standard-of-care therapies lead to sustained transmural healing and clinical remission in fewer than one-third of patients. For children, TNFα inhibition remains the only FDA-approved biologic therapy, providing an even greater urgency to understanding mechanisms of response. Genome-wide association studies ( GWAS ) have identified 418 independent genetic risk loci contributing to IBD, yet the majority are noncoding and their mechanisms of action are difficult to decipher. If causal, they likely alter transcription factor ( TF ) binding and downstream gene expression in particular cell types and contexts. To bridge this knowledge gap, we built a novel resource: multiome-seq (tandem single-nuclei ( sn )RNA-seq and chromatin accessibility ( snATAC )-seq) of intestinal tissue from pediatric IBD patients, where anti-TNF response was defined by endoscopic healing. From the snATAC-seq data, we generated a first-time atlas of chromatin accessibility (putative regulatory elements) for diverse intestinal cell types in the context of IBD. For cell types/contexts mediating genetic risk, we reasoned that accessible chromatin will co-localize with genetic disease risk loci. We systematically tested for significant co-localization of our chromatin accessibility maps and risk variants for 758 GWAS traits. Globally, genetic risk variants for IBD, autoimmune and inflammatory diseases are enriched in accessible chromatin of immune populations, while other traits (e.g., colorectal cancer, metabolic) are enriched in epithelial and stromal populations. This resource opens new avenues to uncover the complex molecular and cellular mechanisms mediating genetic disease risk.

2.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36993647

RESUMO

Our recent data showed that an aberrant IL-10-producing T follicular helper population (Tfh10) accumulates dramatically with age and is associated with age-related declines in vaccine responsiveness. Through single cell gene expression and chromatin accessibility analysis of IL-10+ and IL-10- memory CD4+ T cells from young and aged mice, we identified increased expression of CD153 on aged Tfh and Tfh10 cells. Mechanistically, we linked inflammaging (increased IL-6 levels) to elevated CD153 expression of Tfh cells through c-Maf. Surprisingly, blockade of CD153 in aged mice significantly reduced their vaccine-driven antibody response, which was associated with decreased expression of ICOS on antigen-specific Tfh cells. Combined, these data show that an IL-6/c-Maf/CD153 circuit is critical for maintaining ICOS expression. Thus, although overall Tfh-mediated B cell responses are reduced in the context of vaccines and aging, our data suggest that elevated expression of CD153 on Tfh cells potentiates the remaining Tfh function in aged mice.

3.
PLoS Comput Biol ; 19(1): e1010863, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719906

RESUMO

Transcription factors read the genome, fundamentally connecting DNA sequence to gene expression across diverse cell types. Determining how, where, and when TFs bind chromatin will advance our understanding of gene regulatory networks and cellular behavior. The 2017 ENCODE-DREAM in vivo Transcription-Factor Binding Site (TFBS) Prediction Challenge highlighted the value of chromatin accessibility data to TFBS prediction, establishing state-of-the-art methods for TFBS prediction from DNase-seq. However, the more recent Assay-for-Transposase-Accessible-Chromatin (ATAC)-seq has surpassed DNase-seq as the most widely-used chromatin accessibility profiling method. Furthermore, ATAC-seq is the only such technique available at single-cell resolution from standard commercial platforms. While ATAC-seq datasets grow exponentially, suboptimal motif scanning is unfortunately the most common method for TFBS prediction from ATAC-seq. To enable community access to state-of-the-art TFBS prediction from ATAC-seq, we (1) curated an extensive benchmark dataset (127 TFs) for ATAC-seq model training and (2) built "maxATAC", a suite of user-friendly, deep neural network models for genome-wide TFBS prediction from ATAC-seq in any cell type. With models available for 127 human TFs, maxATAC is the largest collection of high-performance TFBS prediction models for ATAC-seq. maxATAC performance extends to primary cells and single-cell ATAC-seq, enabling improved TFBS prediction in vivo. We demonstrate maxATAC's capabilities by identifying TFBS associated with allele-dependent chromatin accessibility at atopic dermatitis genetic risk loci.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Rede Nervosa , Humanos , Cromatina/genética , Desoxirribonucleases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
4.
Cell Rep ; 41(5): 111578, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323247

RESUMO

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/metabolismo , Neurogênese/fisiologia , Divisão Celular , Ciclo Celular , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
5.
Expert Opin Ther Targets ; 25(8): 621-632, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34488532

RESUMO

INTRODUCTION: Hypoplastic left heart syndrome (HLHS) is a severe developmental defect characterized by the underdevelopment of the left ventricle along with aortic and valvular defects. Multiple palliative surgeries are required for survival. Emerging studies have identified potential mechanisms for the disease onset, including genetic and hemodynamic causes. Genetic variants associated with HLHS include transcription factors, chromatin remodelers, structural proteins, and signaling proteins necessary for normal heart development. Nonetheless, current therapies are being tested clinically and have shown promising results at improving cardiac function in patients who have undergone palliative surgeries. AREAS COVERED: We searched PubMed and clinicaltrials.gov to review most of the mechanistic research and clinical trials involving HLHS. This review discusses the anatomy and pathology of HLHS hearts. We highlight some of the identified genetic variants that underly the molecular pathogenesis of HLHS. Additionally, we discuss some of the emerging therapies and their limitations for HLHS. EXPERT OPINION: While HLHS etiology is largely obscure, palliative therapies remain the most viable option for the patients. It is necessary to generate animal and stem cell models to understand the underlying genetic causes directly leading to HLHS and facilitate the use of gene-based therapies to improve cardiac development and regeneration.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Animais , Humanos , Síndrome do Coração Esquerdo Hipoplásico/tratamento farmacológico , Síndrome do Coração Esquerdo Hipoplásico/genética , Regeneração/genética , Fatores de Transcrição
6.
J Cardiovasc Pharmacol ; 75(2): 112-122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31764396

RESUMO

Myocardial infarction remains a leading cause of morbidity and death. Insufficient delivery of oxygen to the myocardium sets into play a complicated process of repair that involves the temporal recruitment of different immune cells so as to remove debris and necrotic cells expeditiously and to form effective scar tissue. Clearly defined and overlapping phases have been identified in the process, which transitions from an overall proinflammatory to anti-inflammatory phenotype with time. Variations in the strength of the phases as well as in the co-ordination among them have profound consequences. Too strong of an inflammatory phase can result in left ventricular wall thinning and eventual rupture, whereas too strong of an anti-inflammatory phase can lead to cardiac stiffening, arrhythmias, or ventricular aneurisms. In both cases, heart failure is an intermediate consequence with death being the likely outcome. Here, we summarize the role of key immune cells in the repair process of the heart after left ventricular myocardial infarction, along with the associated cytokines and chemokines. A better understanding of the immune response ought to lead hopefully to improved therapies that exploit the natural repair process for mending the infarcted heart.


Assuntos
Sistema Imunitário/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Tempo
7.
Methods Mol Biol ; 2045: 187-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30888667

RESUMO

The use of inducible transgenic Nestin-CreERT2 mice has proved to be an essential research tool for gene targeting and studying the molecular pathways implicated in adult neurogenesis, namely, inside the adult subgranular zone (SGZ) of the dentate gyrus and the adult subventricular zone (SVZ) lining the lateral ventricles. Several lines of Nestin-CreER-expressing mice were generated and used in adult neurogenesis research in the past two decades; however, their suitability for studying neurogenesis in aged mice remains elusive. Here, we assessed the efficiency of Cre-loxP genetic recombination in the aging SVZ using the Nestin-CreERT2/Rosa26YFP line designed by Lagace et al. (J Neurosci 27(46):12623-12629, 2007). This analysis was performed in 12-month-old (middle-aged) mice and 20-month-old (old) mice compared to 2-month-old (young adult) mice. To evaluate successful recombination, our approach relies on the histological assessment of Cre mRNA level of expression and the YFP reporter gene's expression inside the aging SVZ by combining in situ hybridization and immunohistochemistry. Using co-immunolabeling, this approach also provides the advantage of estimating the percentage of recombined progeny [(GFP+Nestin+)/Nestin+] and the rate of cell proliferation [(GFP+Ki67+)/GFP+] inside the aging SVZ niche.


Assuntos
Imunofluorescência/métodos , Ventrículos Laterais/metabolismo , Nestina/genética , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Recombinação Genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Envelhecimento , Animais , Linhagem da Célula , DNA Complementar/genética , Genes Reporter/genética , Hibridização In Situ , Integrases/genética , Integrases/metabolismo , Ventrículos Laterais/fisiologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Oligorribonucleotídeos/genética , Recombinação Genética/efeitos dos fármacos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA