Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 861: 160618, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460106

RESUMO

The drive for farm businesses to move towards net zero greenhouse gas emissions means that there is a need to develop robust methods to quantify the amount of biomass carbon (C) on farms. Direct measurements can be destructive and time-consuming and some prediction methods provide no assessment of uncertainty. This study describes the development, validation, and use of an integrated spatial approach, including the use of lidar data, and Bayesian Belief Networks (BBNs) to quantify total biomass carbon stocks (Ctotal) of i) land cover and ii) landscape features such as hedges and lone trees for five case study sites in lowland England. The results demonstrated that it was possible to develop and use a remote integrated approach to estimate biomass carbon at a farm scale. The highest achievable prediction accuracy was attained from models using the variables AGBC, BGBC, DOMC, age, height, species and land cover, derived from measured information and from literature review. The two BBN models successfully predicted the test values of the total biomass carbon with propagated error rates of 6.7 % and 4.3 % for the land cover and landscape features respectively. These error rates were lower than in other studies indicating that the seven predictors are strong determinants of biomass carbon. The lidar data also enabled the spatial presentation and calculation of the variable C stocks along the length of hedges and within woodlands.


Assuntos
Carbono , Florestas , Biomassa , Fazendas , Teorema de Bayes
2.
Sci Total Environ ; 827: 154164, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35240180

RESUMO

Improved farm management of soil organic carbon (SOC) is critical if national governments and agricultural businesses are to achieve net-zero targets. There are opportunities for farmers to secure financial benefits from carbon trading, but field measurements to establish SOC baselines for each part of a farm can be prohibitively expensive. Hence there is a potential role for spatial modelling approaches that have the resolution, accuracy, and estimates to uncertainty to estimate the carbon levels currently stored in the soil. This study uses three spatial modelling approaches to estimate SOC stocks, which are compared with measured data to a 10 cm depth and then used to determine carbon payments. The three approaches used either fine- (100 m × 100 m) or field-scale input soil data to produce either fine- or field-scale outputs across nine geographically dispersed farms. Each spatial model accurately predicted SOC stocks (range: 26.7-44.8 t ha-1) for the five case study farms where the measured SOC was lowest (range: 31.6-48.3 t ha-1). However, across the four case study farms with the highest measured SOC (range: 56.5-67.5 t ha-1), both models underestimated the SOC with the coarse input model predicting lower values (range: 39.8-48.2 t ha-1) than those using fine inputs (range: 43.5-59.2 t ha-1). Hence the use of the spatial models to establish a baseline, from which to derive payments for additional carbon sequestration, favoured farms with already high SOC levels, with that benefit greatest with the use of the coarse input data. Developing a national approach for SOC sequestration payments to farmers is possible but the economic impacts on individual businesses will depend on the approach and the accounting method.


Assuntos
Carbono , Solo , Agricultura/métodos , Sequestro de Carbono , Fazendas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA