Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Commun Biol ; 7(1): 166, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337015

RESUMO

The mussel industry faces challenges such as low and inconsistent levels of larvae settlement and poor-quality spat, leading to variable production. However, mussel farming remains a vital sustainable and environmentally responsible method for producing protein, fostering ecological responsibility in the aquaculture sector. We investigate the population connectivity and larval dispersion of blue mussels (Mytilus edulis) in Scottish waters, as a case study, using a multidisciplinary approach that combined genetic data and particle modelling. This research allows us to develop a thorough understanding of blue mussel population dynamics in mid-latitude fjord regions, to infer gene-flow patterns, and to estimate population divergence. Our findings reveal a primary south-to-north particle transport direction and the presence of five genetic clusters. We discover a significant and continuous genetic material exchange among populations within the study area, with our biophysical model's outcomes aligning with our genetic observations. Additionally, our model reveals a robust connection between the southwest coast and the rest of the west coast. This study will guide the preservation of mussel farming regions, ensuring sustainable populations that contribute to marine ecosystem health and resilience.


Assuntos
Mytilus edulis , Animais , Mytilus edulis/genética , Estuários , Ecossistema , Aquicultura , Larva/genética
2.
Animals (Basel) ; 13(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958107

RESUMO

Diploid and triploid Atlantic salmon show distinct physiological differences including heart, brain, and digestive system morphology, propensity for certain deformities, temperature tolerance as eggs and once hatched, and different nutritional requirements. Whilst several studies have looked in detail at the rate of embryogenesis in diploid salmon, no study has compared the rate of embryogenesis between ploidies from fertilisation to hatch. This study based its assessment on a seminal paper by Gorodilov (1996) and used the same techniques to compare the rate at which triploid and diploid embryos developed morphological characteristics. Whilst no significant difference was found, this study provides well-needed justification for the assumption that both ploidies develop at the same rate and gives scientific weight to studies which involve manipulation at these stages of development. Two factors that did differ, however, were the timing of hatch, and mortality. Triploids hatched more quickly than diploids and reached 50% hatch at a significantly earlier point. Triploids also suffered from a significantly higher rate of mortality.

3.
PLoS One ; 18(10): e0292319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792726

RESUMO

The current methods used for producing triploid Atlantic salmon are generally reliable but not infallible, and each batch of triploids must be validated to ensure consumer trust and licensing compliance. Microsatellites have recently been shown to offer a cheaper and more convenient alternative to traditional flow cytometry for triploidy validation in a commercial setting. However, incubating eggs to at least the eyed stage for microsatellite validation poses challenges, such as reduced quality and performance of triploids produced from later eggs in the stripping season. To address these issues, we propose another option: extracting DNA from recently fertilised eggs for use in conjunction with microsatellite validation. To achieve this, we have developed an optimized protocol for HotSHOT extraction that can rapidly and cheaply extract DNA from Atlantic salmon eggs, which can then be used for triploidy validation through microsatellites. Our approach offers a simpler and more cost-effective way to validate triploidy, without the need for skilled dissection or expensive kits.


Assuntos
Salmo salar , Triploidia , Animais , Salmo salar/genética , Repetições de Microssatélites/genética , Diploide
4.
Genomics ; 115(6): 110721, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769819

RESUMO

Cleaner fish species have gained great importance in the control of sea lice, among them, lumpfish (Cyclopterus lumpus) has become one of the most popular. Lumpfish life cycle has been closed, and hatchery reproduction is now possible, however, current production is reliant on wild caught broodstock to meet the increasing demand. Selective breeding practices are called to play an important role in the successful breeding of most aquaculture species, including lumpfish. In this study we analysed a lumpfish population for the identification of genomic markers linked to production traits. Sequencing of RAD libraries allowed us to identify, 7193 informative markers within the sampled individuals. Genome wide association analysis for sex, weight, condition factor and standard length was performed. One single major QTL region was identified for sex, while nine QTL regions were detected for weight, and three QTL regions for standard length. A total of 177 SNP markers of interest (from QTL regions) and 399 high Fst SNP markers were combined in a low-density panel, useful to obtain relevant genetic information from lumpfish populations. Moreover, a robust combined subset of 29 SNP markers (10 associated to sex, 14 to weight and 18 to standard length) provided over 90% accuracy in predicting the animal's phenotype by machine learning. Overall, our findings provide significant insights into the genetic control of important traits in lumpfish and deliver important genomic resources that will facilitate the establishment of selective breeding programmes in lumpfish.


Assuntos
Estudo de Associação Genômica Ampla , Perciformes , Animais , Perciformes/genética , Peixes/genética , Aquicultura , Genômica
5.
Dis Aquat Organ ; 152: 85-98, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453457

RESUMO

White spot syndrome virus (WSSV) infects several economically important aquaculture species, and has caused significant losses to the industry. This virus belongs to the Nimaviridae family and has a dsDNA genome ranging between 257 and 309 kb (more than 20 isolate genomes have been fully sequenced and published to date). Multiple routes of infection could be the cause of the high virulence and mortality rates detected in shrimp species. Particularly in Penaeus vannamei, differences in isolate virulence have been observed, along with controversy over whether deletions or insertions are associated with virulence gain or loss. The pathogenicity of 3 isolates from 3 localities in Mexico (2 from Sinaloa: 'CIAD' and 'Angostura'; and one from Sonora: 'Sonora') was evaluated in vivo in whiteleg shrimp P. vannamei infection assays. Differences were observed in shrimp mortality rates among the 3 isolates, of which Sonora was the most virulent. Subsequently, the complete genomes of the Sonora and Angostura isolates were sequenced in depth from infected shrimp tissues and assembled in reference to the genome of isolate strain CN01 (KT995472), comprising 289350 and 288995 bp, respectively. Three deletion zones were identified compared to CN01, comprising 15 genes, including 3 envelope proteins (VP41A, VP52A and VP41B), 1 non-structural protein (ICP35) and 11 other encoding proteins whose function is currently unknown. In addition, 5 genes (wsv129, wsv178, wsv204, wsv249 and wsv497) presented differences in their repetitive motifs, which could potentially be involved in the regulation of gene expression, causing virulence variations.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Virulência/genética , Aquicultura , Bioensaio/veterinária
6.
J Fish Biol ; 101(5): 1371-1374, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35912429

RESUMO

A non-synonymous single nucleotide polymorphism (SNP) underlies a diallelic allozyme polymorphism at the mitochondrial NADP-dependent mMEP-2* locus in Atlantic salmon (Salmo salar L.). The resultant amino acid substitution, which alters the charge of the allelic products, matches the differential mobility of the two allozyme alleles, whereas allozyme and SNP assays revealed genotyping concordance in 257 of 258 individuals. A single mismatch, homozygous allozyme vs. heterozygote SNP, suggests the presence of a second, less common null allele.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Isoenzimas , Alelos , Polimorfismo de Nucleotídeo Único , DNA
7.
Sci Rep ; 12(1): 10356, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725748

RESUMO

The pyrethroid deltamethrin (DTM) is used to treat Atlantic salmon (Salmo salar) against salmon louse (Lepeophtheirus salmonis) infestations. However, DTM resistance has evolved in L. salmonis and is currently common in the North Atlantic. This study aimed to re-assess the association between DTM resistance and mitochondrial (mtDNA) mutations demonstrated in previous reports. Among 218 L. salmonis collected in Scotland in 2018-2019, 89.4% showed DTM resistance in bioassays, while 93.6% expressed at least one of four mtDNA single nucleotide polymorphisms (SNPs) previously shown to be resistance associated. Genotyping at further 14 SNP loci allowed to define three resistance-associated mtDNA haplotypes, named 2, 3 and 4, occurring in 72.0%, 14.2% and 7.3% of samples, respectively. L. salmonis strains IoA-02 (haplotype 2) and IoA-10 (haplotype 3) both showed high levels (~ 100-fold) of DTM resistance, which was inherited maternally in crossing experiments. MtDNA haplotypes 2 and 3 differed in genotype for 17 of 18 studied SNPs, but shared one mutation that causes an amino acid change (Leu107Ser) in the cytochrome c oxidase subunit 1 (COX1) and was present in all DTM resistant while lacking in all susceptible parasites. We conclude that Leu107Ser (COX1) is a main genetic determinant of DTM resistance in L. salmonis.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Animais , Copépodes/genética , DNA Mitocondrial/genética , Doenças dos Peixes/genética , Mutação , Nitrilas , Piretrinas , Salmo salar/genética , Salmão/genética
8.
BMC Genomics ; 23(1): 340, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501689

RESUMO

BACKGROUND: Molluscs remain one significantly under-represented taxa amongst available genomic resources, despite being the second-largest animal phylum and the recent advances in genomes sequencing technologies and genome assembly techniques. With the present work, we want to contribute to the growing efforts by filling this gap, presenting a new high-quality reference genome for Mytilus edulis and investigating the evolutionary history within the Mytilidae family, in relation to other species in the class Bivalvia. RESULTS: Here we present, for the first time, the discovery of multiple whole genome duplication events in the Mytilidae family and, more generally, in the class Bivalvia. In addition, the calculation of evolution rates for three species of the Mytilinae subfamily sheds new light onto the taxa evolution and highlights key orthologs of interest for the study of Mytilus species divergences. CONCLUSIONS: The reference genome presented here will enable the correct identification of molecular markers for evolutionary, population genetics, and conservation studies. Mytilidae have the capability to become a model shellfish for climate change adaptation using genome-enabled systems biology and multi-disciplinary studies of interactions between abiotic stressors, pathogen attacks, and aquaculture practises.


Assuntos
Mytilidae , Mytilus , Animais , Duplicação Gênica , Genoma , Genômica , Mytilidae/genética , Mytilus/genética
9.
PLoS One ; 17(4): e0266533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381037

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease in animals with zoonotic potential; it has been linked to many chronic diseases in humans, especially gastrointestinal diseases (GID). MAP has been extensively studied in Europe and America, but little reports were published from Africa. Sudan is a unique country with close contact between humans and livestock. Despite such interaction, the one health concept is neglected in dealing with cases of humans with GID. In this study, patients admitted to the reference GID hospital in the Sudan over a period of 8 months were screened for presence of MAP in their faeces or colonic biopsies. A total of 86 patients were recruited for this study, but only 67 were screened for MAP, as 19 did not provide the necessary samples for analysis. Both real-time PCR and culture were used to detect MAP in the collected samples and the microbial diversity in patients´ faecal samples was investigated using 16S rDNA nanopore sequencing. In total, 27 (40.3%) patients were MAP positive: they were 15 males and 12 females, of ages between 21 and 80 years. Logistic regression analysis revealed no statistical significance for all tested variables in MAP positive patients (occupation, gender, contact with animal, milk consumption, chronic disease, etc.). A unique microbiome profile of MAP-positive patients in comparison to MAP-negative was found. These findings suggest that a considerable proportion of the population could be MAP infected or carriers. Therefore, increase awareness at community level is urgently needed to decrease the risk of MAP at human/animal interface. This study represents the first report of MAP in humans in the Sudan; nevertheless, a better view of the situation of MAP in humans in the country requires a larger study including patients with other conditions.


Assuntos
Doenças dos Bovinos , Gastroenteropatias , Microbiota , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/microbiologia , Encaminhamento e Consulta
10.
Front Microbiol ; 13: 1067235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36794008

RESUMO

Introduction: Aeromonads are ubiquitous in aquatic environments and several species are opportunistic pathogens of fish. Disease losses caused by motile Aeromonas species, particularly Aeromonas hydrophila, can be challenging in intensive aquaculture, such as at striped catfish (Pangasianodon hypophthalmus) farms in Vietnam. Outbreaks require antibiotic treatments, but their application is undesirable due to risks posed by resistance. Vaccines are an attractive prophylactic and they must protect against the prevalent strains responsible for ongoing outbreaks. Methods: This present study aimed to characterize A. hydrophila strains associated with mortalities in striped catfish culture in the Mekong Delta by a polyphasic genotyping approach, with a view to developing more effective vaccines. Results: During 2013-2019, 345 presumptive Aeromonas spp. isolates were collected at farms in eight provinces. Repetitive element sequence-based PCR, multi-locus sequence typing and whole-genome sequencing revealed most of the suspected 202 A. hydrophila isolates to belong to ST656 (n = 151), which corresponds to the closely-related species Aeromonas dhakensis, with a lesser proportion belonging to ST251 (n = 51), a hypervirulent lineage (vAh) of A. hydrophila already causing concern in global aquaculture. The A. dhakensis ST656 and vAh ST251 isolates from outbreaks possessed unique gene sets compared to published A. dhakensis and vAh ST251 genomes, including antibiotic-resistance genes. The sharing of resistance determinants to sulphonamides (sul1) and trimethoprim (dfrA1) suggests similar selection pressures acting on A. dhakensis ST656 and vAh ST251 lineages. The earliest isolate (a vAh ST251 from 2013) lacked most resistance genes, suggesting relatively recent acquisition and selection, and this underscores the need to reduce antibiotics use where possible to prolong their effectiveness. A novel PCR assay was designed and validated to distinguish A. dhakensis and vAh ST251 strains. Discussion: This present study highlights for the first time A. dhakensis, a zoonotic species that can cause fatal human infection, to be an emerging pathogen in aquaculture in Vietnam, with widespread distribution in recent outbreaks of motile Aeromonas septicaemia in striped catfish. It also confirms vAh ST251 to have been present in the Mekong Delta since at least 2013. Appropriate isolates of A. dhakensis and vAh should be included in vaccines to prevent outbreaks and reduce the threat posed by antibiotic resistance.

11.
Front Physiol ; 12: 761109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925060

RESUMO

To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes, in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified three were highly significantly rhythmic, and circadian in their expression patterns (per1a.1, per1a.2, per1b) and two was significantly rhythmically expressed (per2a, per2b). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 2,864 rhythmically expressed genes (p < 0.001), including 1,215 genes with a circadian expression pattern, of which 11 were clock genes. The majority of circadian expressed genes peaked 2 h before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.

12.
Front Microbiol ; 12: 755801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745063

RESUMO

Essential genes in bacterial pathogens are potential drug targets and vaccine candidates because disrupting their function is lethal. The development of new antibiotics, in addition to effective prevention measures such as vaccination, contributes to addressing the global problem of bacterial antibiotic resistance. The aim of this present study was to determine the essential genes of Vibrio anguillarum, a bacterial pathogen of aquatic animals, as a means to identify putative targets for novel drugs and to assist the prioritisation of potential vaccine candidates. Essential genes were characterised by a Tn-seq approach using the TnSC189 mariner transposon to construct a library of 52,662 insertion mutants. In total, 329 essential genes were identified, with 34.7% found within the core genome of this species; each of these genes represents a strong potential drug target. Seven essential gene products were predicted to reside in the cell membrane or be released extracellularly, thus serving as putative vaccine candidates. Comparison to essential gene data from five other studies of Vibrio species revealed 13 proteins to be conserved across the studies, while 25 genes were specific to V. anguillarum and not found to be essential in the other Vibrio spp. This study provides new information on the essential genes of Vibrio species and the methodology may be applied to other pathogens to guide the development of new drugs and vaccines, which will assist efforts to counter antibiotic resistance.

13.
BMC Genomics ; 22(1): 709, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34598670

RESUMO

BACKGROUND: Tambaqui (Colossoma macropomum, Cuvier, 1818) is the most economically important native freshwater fish species in Brazil. It can reach a total length of over 1 m and a weight of over 40 kg. The species displays a clear sex dimorphism in growth performance, with females reaching larger sizes at harvest. In aquaculture, the production of monosex populations in selective breeding programmes has been therefore identified as a key priority. RESULTS: In the present study, a genetic linkage map was generated by double digest restriction-site associated DNA (ddRAD) sequencing from 248 individuals sampled from two F1 families. The map was constructed using 14,805 informative SNPs and spanned 27 linkage groups. From this, the tambaqui draft genome was improved, by ordering the scaffolds into chromosomes, and sex-linked markers were identified. A total of 235 markers on linkage group 26 showed a significant association with the phenotypic sex, supporting an XX/XY sex determination system in the species. The four most informative sex-linked markers were validated on another 206 sexed individuals, demonstrating an accuracy in predicting sex ranging from 90.0 to 96.7%. CONCLUSIONS: The genetic mapping and novel sex-linked DNA markers identified and validated offer new tools for rapid progeny sexing, thus supporting the development of monosex female production in the industry while also supporting breeding programmes of the species.


Assuntos
Caraciformes/genética , Caracteres Sexuais , Animais , Mapeamento Cromossômico , Feminino , Ligação Genética , Marcadores Genéticos , Masculino
14.
Evol Appl ; 14(7): 1830-1843, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295367

RESUMO

Mussels belonging to the Mytilus species complex (M. edulis, ME; M. galloprovincialis, MG; and M. trossulus, MT) often occur in sympatry, facilitating introgressive hybridization. This may be further promoted by mussel aquaculture practices, with MT introgression often resulting in commercially unfavourable traits such as low meat yield and weak shells. To investigate the relationship between genotype and shell phenotype, genetic and morphological variability was quantified across depth (1 m to 7 m) along a cultivation rope at a mussel farm on the West coast of Scotland. A single nuclear marker (Me15/16) and a novel panel of 33 MT-diagnostic single nucleotide polymorphisms were used to evaluate stock structure and the extent of MT introgression across depth. Variation in shell strength, determined as the maximum compression force for shell puncture, and shell shape using geometric morphometric analysis were evaluated in relation to cultivation depth and the genetic profiles of the mussels. Overall, ME was the dominant genotype across depth, followed by ME × MG hybrids and smaller quantities of ME × MT hybrids and pure MT individuals. In parallel, we identified multiple individuals that were either predominantly homozygous or heterozygous for MT-diagnostic alleles, likely representing pure MT and first-generation ME × MT hybrids, respectively. Both the proportion of individuals carrying MT alleles and MT allele frequency declined with depth. Furthermore, MT-introgressed individuals had significantly weaker and more elongate shells than nonintrogressed individuals. This study provides detailed insights into stock structure along a cultivation rope and suggests that practical methods to assess shell strength and shape of cultivated mussels may facilitate the rapid identification of MT, limiting the impact of this commercially damaging species.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34098083

RESUMO

The pyrethroid deltamethrin and the macrocyclic lactone emamectin benzoate (EMB) are used to treat infestations of farmed salmon by parasitic salmon lice, Lepeophtheirus salmonis. While the efficacy of both compounds against Atlantic populations of the parasite has decreased as a result of the evolution of resistance, the molecular mechanisms of drug resistance in L. salmonis are currently not fully understood. The functionally diverse carboxylesterases (CaE) family includes members involved in pesticide resistance phenotypes of terrestrial arthropods. The present study had the objective to characterize the CaE family in L. salmonis and assess its role in drug resistance. L. salmonis CaE homologues were identified by homology searches in the parasite's transcriptome and genome. The transcript expression of CaEs predicted to be catalytically competent was studied using quantitative reverse-transcription PCR in drug susceptible and multi-resistant L. salmonis. The above strategy led to the identification of 21 CaEs genes/pseudogenes. Phylogenetic analyses assigned 13 CaEs to clades involved in neurodevelopmental signaling and cell adhesion, while three sequences were predicted to encode secreted enzymes. Ten CaEs were identified as being potentially catalytically competent. Transcript expression of acetylcholinesterase (ace1b) was significantly increased in multi-resistant lice compared to drug-susceptible L. salmonis, with transcript abundance further increased in preadult-II females following EMB exposure. In summary, results from the present study demonstrate that L. salmonis possesses fewer CaE gene family members than most arthropods characterized so far. Drug resistance in L. salmonis was associated with overexpression of ace1b.


Assuntos
Hidrolases de Éster Carboxílico/genética , Copépodes/enzimologia , Copépodes/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Animais , Antiparasitários/metabolismo , Antiparasitários/farmacologia , Inseticidas/metabolismo , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Ivermectina/farmacologia , Nitrilas/metabolismo , Nitrilas/farmacologia , Filogenia , Piretrinas/metabolismo , Piretrinas/farmacologia
16.
Pest Manag Sci ; 77(2): 1052-1060, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33001569

RESUMO

BACKGROUND: The pyrethroid deltamethrin is used to treat infestations of farmed salmon by parasitic salmon lice, Lepeophtheirus salmonis (Krøyer). However, the efficacy of deltamethrin for salmon delousing is threatened by resistance development. In terrestrial arthropods, knockdown resistance (kdr) mutations of the voltage-gated sodium channel (Nav ), the molecular target for pyrethroids, can cause deltamethrin resistance. A putative kdr mutation of an L. salmonis sodium channel homologue (LsNav 1.3 I936V) has been identified previously. At the same time, deltamethrin resistance of L. salmonis has been shown to be inherited maternally and to be associated with mitochondrial DNA (mtDNA) mutations. This study assessed potential roles of the above putative kdr mutation as a determinant of deltamethrin resistance in laboratory strains and field populations of L. salmonis. RESULTS: The deltamethrin-resistant L. salmonis strain IoA-02 expresses the LsNav 1.3 I936V mutation but was susceptible to the non-ester pyrethroid etofenprox, a compound against which pyrethroid-resistant arthropods are usually cross-resistant if resistance is caused by Nav mutations. In a family derived from a cross between an IoA-02 male and a drug-susceptible female lacking the kdr mutation, deltamethrin resistance was not associated with the genotype at the LsNav 1.3 locus (P > 0.05). Similarly, in Scottish field populations of L. salmonis, LsNav 1.3 I936V showed no association with deltamethrin resistance. By contrast, genotypes at the mtDNA loci A14013G and A9030G were significantly associated with deltamethrin resistance (P < 0.001). CONCLUSION: In the studied L. salmonis isolates, deltamethrin resistance was unrelated to the LsNav 1.3 I936V mutation, but showed close association with mtDNA mutations.


Assuntos
Copépodes , Doenças dos Peixes , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Copépodes/genética , Feminino , Resistência a Inseticidas/genética , Masculino , Mutação , Nitrilas , Piretrinas/farmacologia , Salmão , Canais de Sódio Disparados por Voltagem/genética
17.
Curr Microbiol ; 78(1): 114-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33230621

RESUMO

Ballan wrasse (Labrus bergylta, Ascanius 1767) are cleaner fish cultured in northern Europe to remove sea lice from farmed Atlantic salmon (Salmo salar, Linnaeus 1758). Despite increasing appreciation for the importance of the microbiota on the phenotypes of vertebrates including teleosts, the microbiota of wrasse eggs has yet to be described. Therefore, the aim of this present study was to describe the bacterial component of the microbiota of ballan wrasse eggs shortly after spawning and at 5 days, once the eggs had undergone a routine incubation protocol that included surface disinfection steps in a common holding tank. Triplicate egg samples were collected from each of three spawning tanks and analysis of 16S rRNA gene sequences revealed that 88.6% of reads could be identified to 186 taxonomic families. At Day 0, reads corresponding to members of the Vibrionaceae, Colwelliaceae and Rubritaleaceae families were detected at greatest relative abundances. Bacterial communities of eggs varied more greatly between tanks than between samples deriving from the same tank. At Day 5, there was a consistent reduction in 16S rRNA gene sequence richness across the tanks. Even though the eggs from the different tanks were incubated in a common holding tank, the bacterial communities of the eggs from the different tanks had diverged to become increasingly dissimilar. This suggests that the disinfection and incubation exerted differential effects of the microbiota of the eggs from each tank and that the influence of the tank water on the composition of the egg microbiota was lower than expected. This first comprehensive description of the ballan wrasse egg bacterial community is an initial step to understand the role and function of the microbiota on the phenotype of this fish. In future, mass DNA sequencing methods may be applied in hatcheries to screen for pathogens and as a tool to assess the health status of eggs.


Assuntos
Doenças dos Peixes , Perciformes , Vibrionaceae , Animais , Peixes , RNA Ribossômico 16S/genética
18.
Sci Rep ; 10(1): 18613, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122794

RESUMO

Tilapia is one of the most commercially valuable species in aquaculture with over 5 million tonnes of Nile tilapia, Oreochromis niloticus, produced worldwide every year. It has become increasingly important to keep track of the inheritance of the selected traits under continuous improvement (e.g. growth rate, size at maturity or genetic gender), as selective breeding has also resulted in genes that can hitchhike as part of the process. The goal of this study was to generate a Local Ancestry Interence workflow that harnessed existing tilapia genotyping-by-sequencing studies, such as Double Digest RAD-seq derived Single-Nucleotide Polymorphism markers. We developed a workflow and implemented a suite of tools to resolve the local ancestry of each chromosomal locus based on reference panels of tilapia species of known origin. We used tilapia species, wild populations and breeding programmes to validate our methods. The precision of the pipeline was evaluated on the basis of its ability to identify the genetic makeup of samples of known ancestry. The easy and inexpensive application of local ancestry inference in breeding programmes will facilitate the monitoring of the genetic profile of individuals of interest, the tracking of the movement of genes from parents to offspring and the detection of hybrids and their origin.


Assuntos
Tilápia/genética , Animais , Aquicultura/métodos , Cruzamento/métodos , Cromossomos/genética , Ciclídeos/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética
19.
Front Microbiol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695083

RESUMO

Vibrio anguillarum is the causative agent of vibriosis in many species important to aquaculture. We generated whole genome sequence (WGS) data on a diverse collection of 64 V. anguillarum strains, which we supplemented with 41 publicly available genomes to produce a combined dataset of 105 strains. These WGS data resolved six major lineages (L1-L6), and the additional use of multilocus sequence analysis (MLSA) clarified the association of L1 with serotype O1 and Salmonidae hosts (salmon/trout), and L2 with serotypes O2a/O2b/O2c and Gadidae hosts (cod). Our analysis also revealed a large-scale homologous replacement of 526-kb of core genome in an L2 strain from a con-specific donor. Although the strains affected by this recombination event are exclusively associated with Gadidae, we find no clear genetic evidence that it has played a causal role in host specialism. Whilst it is established that Vibrio species freely recombine, to our knowledge this is the first report of a contiguous recombinational replacement of this magnitude in any Vibrio genome. We also note a smaller accessory region of high single nucleotide polymorphism (SNP) density and gene content variation that contains lipopolysaccharide biosynthesis genes which may play a role in determining serotype.

20.
BMC Genet ; 21(1): 49, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349678

RESUMO

BACKGROUND: Tilapias (Family Cichlidae) are the second most important group of aquaculture species in the world. They have been the subject of much research on sex determination due to problems caused by early maturation in culture and their complex sex-determining systems. Different sex-determining loci (linkage group 1, 20 and 23) have been detected in various tilapia stocks. The 'genetically improved farmed tilapia' (GIFT) stock, founded from multiple Nile tilapia (Oreochromis niloticus) populations, with some likely to have been introgressed with O. mossambicus, is a key resource for tilapia aquaculture. The sex-determining mechanism in the GIFT stock was unknown, but potentially complicated due to its multiple origins. RESULTS: A bulk segregant analysis (BSA) version of double-digest restriction-site associated DNA sequencing (BSA-ddRADseq) was developed and used to detect and position sex-linked single nucleotide polymorphism (SNP) markers in 19 families from the GIFT strain breeding nucleus and two Stirling families as controls (a single XY locus had been previously mapped to LG1 in the latter). About 1500 SNPs per family were detected across the genome. Phenotypic sex in Stirling families showed strong association with LG1, whereas only SNPs located in LG23 showed clear association with sex in the majority of the GIFT families. No other genomic regions linked to sex determination were apparent. This region was validated using a series of LG23-specific DNA markers (five SNPs with highest association to sex from this study, the LG23 sex-associated microsatellite UNH898 and ARO172, and the recently isolated amhy marker for individual fish (n = 284). CONCLUSIONS: Perhaps surprisingly given its multiple origins, sex determination in the GIFT strain breeding nucleus was associated only with a locus in LG23. BSA-ddRADseq allowed cost-effective analysis of multiple families, strengthening this conclusion. This technique has potential to be applied to other complex traits. The sex-linked SNP markers identified will be useful for potential marker-assisted selection (MAS) to control sex-ratio in GIFT tilapia to suppress unwanted reproduction during growout.


Assuntos
Ciclídeos/genética , Ligação Genética , Processos de Determinação Sexual/genética , Animais , Aquicultura , Cruzamento , Mapeamento Cromossômico , Ciclídeos/fisiologia , Feminino , Estudos de Associação Genética/veterinária , Marcadores Genéticos , Genótipo , Masculino , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único , Razão de Masculinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA