Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Br J Psychol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845595

RESUMO

Throughout the day, humans show natural fluctuations in arousal that impact cognitive function. To study the behavioural dynamics of cognitive control during high and low arousal states, healthy participants performed an auditory conflict task during high-intensity physical exercise (N = 39) or drowsiness (N = 33). In line with the pre-registered hypotheses, conflict and conflict adaptation effects were preserved during both altered arousal states. Overall task performance was markedly poorer during low arousal, but not for high arousal. Modelling behavioural dynamics with drift diffusion analysis revealed evidence accumulation and non-decision time decelerated, and decisional boundaries became wider during low arousal, whereas high arousal was unexpectedly associated with a decrease in the interference of task-irrelevant information processing. These findings show how arousal differentially modulates cognitive control at both sides of normal alertness, and further validate drowsiness and physical exercise as key experimental models to disentangle the interaction between physiological fluctuations on cognitive dynamics.

2.
PLoS One ; 19(5): e0303209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768146

RESUMO

Mental health issues are markedly increased in individuals with autism, making it the number one research priority by stakeholders. There is a crucial need to use personalized approaches to understand the underpinnings of mental illness in autism and consequently, to address individual needs. Based on the risk factors identified in typical mental research, we propose the following themes central to mental health issues in autism: sleep difficulties and stress. Indeed, the prevalence of manifold circadian disruptions and sleep difficulties in autism, alongside stress related to sensory overload, forms an integral part of autistic symptomatology. This proof-of-concept study protocol outlines an innovative, individualised approach towards investigating the interrelationships between stress indices, sleep and circadian activation patterns, and sensory sensitivity in autism. Embracing an individualized methodology, we aim to collect 14 days of data per participant from 20 individuals with autism diagnoses and 20 without. Participants' sleep will be monitored using wearable EEG headbands and a sleep diary. Diurnal tracking of heart rate and electrodermal activity through wearables will serve as proxies of stress. Those objective data will be synchronized with subjective experience traces collected throughout the day using the Temporal Experience Tracing (TET) method. TET facilitates the quantification of relevant aspects of individual experience states, such as stress or sensory sensitivities, by providing a continuous multidimensional description of subjective experiences. Capturing the dynamics of subjective experiences phase-locked to neural and physiological proxies both between and within individuals, this approach has the potential to contribute to our understanding of critical issues in autism, including sleep problems, sensory reactivity and stress. The planned strives to provide a pathway towards developing a more nuanced and individualized approach to addressing mental health in autism.


Assuntos
Transtorno Autístico , Ritmo Circadiano , Estresse Psicológico , Humanos , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Ritmo Circadiano/fisiologia , Estresse Psicológico/fisiopatologia , Qualidade do Sono , Masculino , Feminino , Adulto , Adolescente , Sono/fisiologia , Frequência Cardíaca/fisiologia , Adulto Jovem , Eletroencefalografia
3.
Front Psychol ; 15: 1321242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680276

RESUMO

Introduction: Social adaptation is a multifaceted process that encompasses cognitive, social, and affective factors. Previous research often focused on isolated variables, overlooking their interactions, especially in challenging environments. Our study addresses this by investigating how cognitive (working memory, verbal intelligence, self-regulation), social (affective empathy, family networks, loneliness), and psychological (locus of control, self-esteem, perceived stress) factors interact to influence social adaptation. Methods: We analyzed data from 254 adults (55% female) aged 18 to 46 in economically vulnerable households in Santiago, Chile. We used Latent profile analysis (LPA) and machine learning to uncover distinct patters of socioadaptive features and identify the most discriminating features. Results: LPA showed two distinct psychosocial adaptation profiles: one characterized by effective psychosocial adaptation and another by poor psychosocial adaptation. The adaptive profile featured individuals with strong emotional, cognitive, and behavioral self-regulation, an internal locus of control, high self-esteem, lower stress levels, reduced affective empathy, robust family support, and decreased loneliness. Conversely, the poorly adapted profile exhibited the opposite traits. Machine learning pinpointed six key differentiating factors in various adaptation pathways within the same vulnerable context: high self-esteem, cognitive and behavioral self-regulation, low stress levels, higher education, and increased social support. Discussion: This research carries significant policy implications, highlighting the need to reinforce protective factors and psychological resources, such as self-esteem, self-regulation, and education, to foster effective adaptation in adversity. Additionally, we identified critical risk factors impacting social adaptation in vulnerable populations, advancing our understanding of this intricate phenomenon.

4.
Cortex ; 174: 201-214, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569258

RESUMO

Important efforts have been made to describe the neural and cognitive features of healthy and clinical populations. However, the neural and cognitive features of socially vulnerable individuals remain largely unexplored, despite their proneness to developing neurocognitive disorders. Socially vulnerable individuals can be characterised as socially deprived, having a low socioeconomic status, suffering from chronic social stress, and exhibiting poor social adaptation. While it is known that such individuals are likely to perform worse than their peers on executive function tasks, studies on healthy but socially vulnerable groups are lacking. In the current study, we explore whether neural power and connectivity signatures can characterise executive function performance in healthy but socially vulnerable individuals, shedding light on the impairing effects that chronic stress and social disadvantages have on cognition. We measured resting-state electroencephalography and executive functioning in 38 socially vulnerable participants and 38 matched control participants. Our findings indicate that while neural power was uninformative, lower delta and theta phase synchrony are associated with worse executive function performance in all participants, whereas delta phase synchrony is higher in the socially vulnerable group compared to the control group. Finally, we found that delta phase synchrony and years of schooling are the best predictors for belonging to the socially vulnerable group. Overall, these findings suggest that exposure to chronic stress due to socioeconomic factors and a lack of education are associated with changes in slow-wave neural connectivity and executive functioning.


Assuntos
Encéfalo , Função Executiva , Humanos , Eletroencefalografia , Cognição
5.
Trends Neurosci ; 47(4): 273-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519370

RESUMO

Sleep is crucial for many vital functions and has been extensively studied. By contrast, the sleep-onset period (SOP), often portrayed as a mere prelude to sleep, has been largely overlooked and remains poorly characterized. Recent findings, however, have reignited interest in this transitional period and have shed light on its neural mechanisms, cognitive dynamics, and clinical implications. This review synthesizes the existing knowledge about the SOP in humans. We first examine the current definition of the SOP and its limits, and consider the dynamic and complex electrophysiological changes that accompany the descent to sleep. We then describe the interplay between internal and external processing during the wake-to-sleep transition. Finally, we discuss the putative cognitive benefits of the SOP and identify novel directions to better diagnose sleep-onset disorders.


Assuntos
Eletroencefalografia , Vigília , Humanos , Vigília/fisiologia , Sono/fisiologia
6.
Emotion ; 24(1): 177-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37347885

RESUMO

Despite a surge of studies on the effects of COVID-19 on our well-being, we know little about how the pandemic is reflected in people's spontaneous thoughts and experiences, such as mind-wandering (or daydreaming) during wakefulness and dreaming during sleep. We investigated whether and how COVID-19-related general concern, anxiety, and daily worry are associated with the daily fluctuation of the affective quality of mind-wandering and dreaming, and to what extent these associations can be explained by poor sleep quality. We used ecological momentary assessment by asking participants to rate the affect they experienced during mind-wandering and dreaming in daily logs over a 2-week period. Our preregistered analyses based on 1,755 dream logs from 172 individuals and 1,496 mind-wandering logs from 152 individuals showed that, on days when people reported higher levels of negative affect and lower levels of positive affect during mind-wandering, they experienced more worry. Only daily sleep quality was associated with affect experienced during dreaming at the within-person level: on nights with poorer sleep quality people reported experiencing more negative and less positive affect in dreams and were more likely to experience nightmares. However, at the between-person level, individuals who experienced more daily COVID-19 worry during the study period also reported experiencing more negative affect during mind-wandering and during dreaming. As such, the continuity between daily and nightly experiences seems to rely more on stable trait-like individual differences in affective processing. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
COVID-19 , Humanos , Sono , Ansiedade , Avaliação Momentânea Ecológica , Transtornos de Ansiedade
7.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500495

RESUMO

From the perspective of predictive coding, normal aging is accompanied by decreased weighting of sensory inputs and increased reliance on predictions, resulting in the attenuation of prediction errors in older age. Recent electroencephalography (EEG) research further revealed that the age-related shift from sensorium to predictions is hierarchy-selective, as older brains show little reduction in lower-level but significant suppression in higher-level prediction errors. Moreover, the disrupted propagation of prediction errors from the lower-level to the higher-level seems to be linked to deficient maintenance of information in working memory. However, it is unclear whether the hierarchical predictive processing continues to decline with advancing age as working memory. Here, we longitudinally followed a sample of 78 participants from three age groups (including seniors, adults, and adolescents) over three years' time. Seniors exhibited largely preserved local processing [consisting of comparable mismatch negativity (MMN), delayed P3a, and comparable reorienting negativity (RON)] but significantly compromised global processing (consisting of suppressed frontocentral negativity and suppressed P3b) in the auditory local-global paradigm. These electrophysiological responses did not change with the passing of time, unlike working memory which deteriorated with advancing age. Correlation analysis further showed that these electrophysiological responses signaling prediction errors are indicative of concurrent working memory. Moreover, there was a correlation between earlier predictive processing and later working memory but not between earlier working memory and later predictive processing. The temporal asymmetry suggested that the hierarchy-selective attenuation of prediction errors is likely a precursor of working memory decline.


Assuntos
Eletroencefalografia , Memória de Curto Prazo , Adulto , Adolescente , Humanos , Pré-Escolar , Memória de Curto Prazo/fisiologia , Tempo de Reação/fisiologia , Encéfalo , Transtornos da Memória , Percepção Auditiva/fisiologia , Estimulação Acústica/métodos
8.
J Neurosci ; 42(46): 8729-8741, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36223999

RESUMO

To ensure survival in a dynamic environment, the human neocortex monitors input streams from different sensory organs for important sensory events. Which principles govern whether different senses share common or modality-specific brain networks for sensory target detection? We examined whether complex targets evoke sustained supramodal activity while simple targets rely on modality-specific networks with short-lived supramodal contributions. In a series of hierarchical multisensory target detection studies (n = 77, of either sex) using EEG, we applied a temporal cross-decoding approach to dissociate supramodal and modality-specific cortical dynamics elicited by rule-based global and feature-based local sensory deviations within and between the visual, somatosensory, and auditory modality. Our data show that each sense implements a cortical hierarchy orchestrating supramodal target detection responses, which operate at local and global timescales in successive processing stages. Across different sensory modalities, simple feature-based sensory deviations presented in temporal vicinity to a monotonous input stream triggered a mismatch negativity-like local signal which decayed quickly and early, whereas complex rule-based targets tracked across time evoked a P3b-like global neural response which generalized across a late time window. Converging results from temporal cross-modality decoding analyses across different datasets, we reveal that global neural responses are sustained in a supramodal higher-order network, whereas local neural responses canonically thought to rely on modality-specific regions evolve into short-lived supramodal activity. Together, our findings demonstrate that cortical organization largely follows a gradient in which short-lived modality-specific as well as supramodal processes dominate local responses, whereas higher-order processes encode temporally extended abstract supramodal information fed forward from modality-specific cortices.SIGNIFICANCE STATEMENT Each sense supports a cortical hierarchy of processes tracking deviant sensory events at multiple timescales. Conflicting evidence produced a lively debate around which of these processes are supramodal. Here, we manipulated the temporal complexity of auditory, tactile, and visual targets to determine whether cortical local and global ERP responses to sensory targets share cortical dynamics between the senses. Using temporal cross-decoding, we found that temporally complex targets elicit a supramodal sustained response. Conversely, local responses to temporally confined targets typically considered modality-specific rely on early short-lived supramodal activation. Our finding provides evidence for a supramodal gradient supporting sensory target detection in the cortex, with implications for multiple fields in which these responses are studied (e.g., predictive coding, consciousness, and attention).


Assuntos
Percepção do Tempo , Percepção do Tato , Humanos , Mapeamento Encefálico/métodos , Atenção/fisiologia , Encéfalo/fisiologia , Percepção do Tato/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica/métodos
9.
Sleep ; 45(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-35998110

RESUMO

Presleep exposure to short-wavelength light suppresses melatonin and decreases sleepiness with activating effects extending to sleep. This has mainly been attributed to melanopic effects, but mechanistic insights are missing. Thus, we investigated whether two light conditions only differing in the melanopic effects (123 vs. 59 lx melanopic EDI) differentially affect sleep besides melatonin. Additionally, we studied whether the light differentially modulates sensory processing during wakefulness and sleep. Twenty-nine healthy volunteers (18-30 years, 15 women) were exposed to two metameric light conditions (high- vs. low-melanopic, ≈60 photopic lx) for 1 h ending 50 min prior to habitual bed time. This was followed by an 8-h sleep opportunity with polysomnography. Objective sleep measurements were complemented by self-report. Salivary melatonin, subjective sleepiness, and behavioral vigilance were sampled at regular intervals. Sensory processing was evaluated during light exposure and sleep on the basis of neural responses related to violations of expectations in an oddball paradigm. We observed suppression of melatonin by ≈14% in the high- compared to the low-melanopic condition. However, conditions did not differentially affect sleep, sleep quality, sleepiness, or vigilance. A neural mismatch response was evident during all sleep stages, but not differentially modulated by light. Suppression of melatonin by light targeting the melanopic system does not automatically translate to acutely altered levels of vigilance or sleepiness or to changes in sleep, sleep quality, or basic sensory processing. Given contradicting earlier findings and the retinal anatomy, this may suggest that an interaction between melanopsin and cone-rod signals needs to be considered. Clinical Trial Registry: German Clinical Trials Register, DRKS00023602, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00023602.


Assuntos
Melatonina , Vigília , Feminino , Humanos , Ritmo Circadiano/fisiologia , Luz , Melatonina/farmacologia , Percepção , Sono/fisiologia , Sonolência , Vigília/fisiologia
10.
Eur J Neurosci ; 56(9): 5615-5636, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35799324

RESUMO

Down's syndrome is associated with pathological ageing and a propensity for early-onset Alzheimer's disease. The early symptoms of dementia in people with Down's syndrome may reflect frontal lobe vulnerability to amyloid deposition. Auditory predictive processes rely on the bilateral auditory cortices with the recruitment of frontal cortices and appear to be impaired in pathologies characterized by compromised frontal lobe. Hence, auditory predictive processes were investigated to assess Down's syndrome pathology and its relationship with pathological ageing. An auditory electroencephalography (EEG) global-local paradigm was presented to the participants, in which oddball stimuli could either violate local or higher level global rules. We characterised predictive processes in individuals with Down's syndrome and their relationship with pathological ageing, with a focus on the EEG event-related potential called Mismatch Negativity (MMN) and the P300. In Down's syndrome, we also evaluated the EEG components as predictor of cognitive decline 1 year later. We found that predictive processes of detection of auditory violations are overall preserved in Down's syndrome but also that the amplitude of the MMN to local deviancies decreases with age. However, the 1-year follow-up of Down's syndrome found that none of the ERPs measures predicted subsequent cognitive decline. The present study provides a novel characterization of electrophysiological markers of local and global predictive processes in Down's syndrome.


Assuntos
Doença de Alzheimer , Síndrome de Down , Adulto , Humanos , Síndrome de Down/diagnóstico , Síndrome de Down/patologia , Síndrome de Down/psicologia , Envelhecimento , Eletroencefalografia
11.
Eur J Neurosci ; 55(6): 1584-1600, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263482

RESUMO

There is increasing evidence that the level of consciousness can be captured by neural informational complexity: for instance, complexity, as measured by the Lempel Ziv (LZ) compression algorithm, decreases during anaesthesia and non-rapid eye movement (NREM) sleep in humans and rats, when compared with LZ in awake and REM sleep. In contrast, LZ is higher in humans under the effect of psychedelics, including subanaesthetic doses of ketamine. However, it is both unclear how this result would be modulated by varying ketamine doses, and whether it would extend to other species. Here, we studied LZ with and without auditory stimulation during wakefulness and different sleep stages in five cats implanted with intracranial electrodes, as well as under subanaesthetic doses of ketamine (5, 10, and 15 mg/kg i.m.). In line with previous results, LZ was lowest in NREM sleep, but similar in REM and wakefulness. Furthermore, we found an inverted U-shaped curve following different levels of ketamine doses in a subset of electrodes, primarily in prefrontal cortex. However, it is worth noting that the variability in the ketamine dose-response curve across cats and cortices was larger than that in the sleep-stage data, highlighting the differential local dynamics created by two different ways of modulating conscious state. These results replicate previous findings, both in humans and other species, demonstrating that neural complexity is highly sensitive to capture state changes between wake and sleep stages while adding a local cortical description. Finally, this study describes the differential effects of ketamine doses, replicating a rise in complexity for low doses, and further fall as doses approach anaesthetic levels in a differential manner depending on the cortex.


Assuntos
Ketamina , Animais , Gatos , Eletroencefalografia , Ketamina/farmacologia , Ratos , Sono/fisiologia , Fases do Sono/fisiologia , Sono REM/fisiologia , Vigília/fisiologia
12.
Behav Res Methods ; 54(1): 457-474, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34244985

RESUMO

While religious beliefs are typically studied using questionnaires, there are no standardized tools available for cognitive psychology and neuroscience studies of religious cognition. Here we present the first such tool-the Cambridge Psycholinguistic Inventory of Christian Beliefs (CPICB)-which consists of audio-recorded items of religious beliefs as well as items of three control conditions: moral beliefs, abstract scientific knowledge and empirical everyday life knowledge. The CPICB is designed in such a way that the ultimate meaning of each sentence is revealed only by its final critical word, which enables the precise measurement of reaction times and/or latencies of neurophysiological responses. Each statement comes in a pair of Agree/Disagree versions of critical words, which allows for experimental contrasting between belief and disbelief conditions. Psycholinguistic and psychoacoustic matching between Agree/Disagree versions of sentences, as well as across different categories of the CPICB items (Religious, Moral, Scientific, Everyday), enables rigorous control of low-level psycholinguistic and psychoacoustic features while testing higher-level beliefs. In the exploratory Study 1 (N = 20), we developed and tested a preliminary version of the CPICB that had 480 items. After selecting 400 items that yielded the most consistent responses, we carried out a confirmatory test-retest Study 2 (N = 40). Preregistered data analyses confirmed excellent construct validity, internal consistency and test-retest reliability of the CPICB religious belief statements. We conclude that the CPICB is suitable for studying Christian beliefs in an experimental setting involving behavioural and neuroimaging paradigms, and provide Open Access to the inventory items, fostering further development of the experimental research of religiosity.


Assuntos
Princípios Morais , Psicolinguística , Humanos , Psicometria , Reprodutibilidade dos Testes , Inquéritos e Questionários
13.
J Neurosci ; 42(3): 454-473, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34815316

RESUMO

The ability to make decisions based on external information, prior knowledge, and evidence is a crucial aspect of cognition and may determine the success and survival of an organism. Despite extensive work on decision-making mechanisms/models, understanding the effects of alertness on neural and cognitive processes remain limited. Here we use EEG and behavioral modeling to characterize cognitive and neural dynamics of perceptual decision-making in awake/low alertness periods in humans (14 male, 18 female) and characterize the compensatory mechanisms as alertness decreases. Well-rested human participants, changing between full-wakefulness and low alertness, performed an auditory tone-localization task, and its behavioral dynamics were quantified with psychophysics, signal detection theory, and drift-diffusion modeling, revealing slower reaction times, inattention to the left side of space, and a lower rate of evidence accumulation in periods of low alertness. Unconstrained multivariate pattern analysis (decoding) showed a ∼280 ms delayed onset driven by low alertness of the neural signatures differentiating between left and right decision, with a spatial reconfiguration from centroparietal to lateral frontal regions 150-360 ms. To understand the neural compensatory mechanisms with decreasing alertness, we connected the evidence-accumulation behavioral parameter to the neural activity, showing in the early periods (125-325 ms) a shift in the associated patterns from right parietal regions in awake, to right frontoparietal during low alertness. This change in the neurobehavioral dynamics for central accumulation-related cognitive processes defines a clear reconfiguration of the brain networks' regions and dynamics needed for the implementation of decision-making, revealing mechanisms of resilience of cognition when challenged by decreased alertness.SIGNIFICANCE STATEMENT Most living organisms make multiple daily decisions, and these require a degree of evidence from both the environment and the internal milieu. Such decisions are usually studied under sequential sampling models and involve making a behavioral choice based on sensory encoding, central accumulation, and motor implementation processes. Since there is little research on how decreasing alertness affects such cognitive processes, this study has looked at the cognitive and neural dynamics of perceptual decision-making in people while fully awake and in drowsy periods. Using computational modeling of behavior and neural dynamics on human participants performing an auditory tone-localization task, we reveal how low alertness modulates evidence accumulation-related processes and its corresponding compensatory neural signatures.


Assuntos
Nível de Alerta/fisiologia , Atenção/fisiologia , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação , Adulto Jovem
15.
Sci Rep ; 11(1): 16267, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381123

RESUMO

The overt or covert ability to follow commands in patients with disorders of consciousness is considered a sign of awareness and has recently been defined as cortically mediated behaviour. Despite its clinical relevance, the brain signatures of the perceptual processing supporting command following have been elusive. This multimodal study investigates the temporal spectral pattern of electrical brain activity to identify features that differentiated healthy controls from patients both able and unable to follow commands. We combined evidence from behavioural assessment, functional neuroimaging during mental imagery and high-density electroencephalography collected during auditory prediction, from 21 patients and 10 controls. We used a penalised regression model to identify command following using features from electroencephalography. We identified seven well-defined spatiotemporal signatures in the delta, theta and alpha bands that together contribute to identify DoC subjects with and without the ability to follow command, and further distinguished these groups of patients from controls. A fine-grained analysis of these seven signatures enabled us to determine that increased delta modulation at the frontal sensors was the main feature in command following patients. In contrast, higher frequency theta and alpha modulations differentiated controls from both groups of patients. Our findings highlight a key role of spatiotemporally specific delta modulation in supporting cortically mediated behaviour including the ability to follow command. However, patients able to follow commands nevertheless have marked differences in brain activity in comparison with healthy volunteers.


Assuntos
Comportamento , Cognição , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/psicologia , Eletroencefalografia/métodos , Lobo Temporal/fisiopatologia , Adulto , Idoso , Conscientização , Feminino , Humanos , Masculino , Processos Mentais , Pessoa de Meia-Idade , Percepção , Adulto Jovem
16.
Cortex ; 143: 180-194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450566

RESUMO

Humans are uniquely capable of adapting to highly changing environments by updating relevant information and adjusting ongoing behaviour accordingly. Here we show how this ability -termed cognitive flexibility- is differentially modulated by high and low arousal fluctuations. We implemented a probabilistic reversal learning paradigm in healthy participants as they transitioned towards sleep or physical extenuation. The results revealed, in line with our pre-registered hypotheses, that low arousal leads to diminished behavioural performance through increased decision volatility, while performance decline under high arousal was attributed to increased perseverative behaviour. These findings provide evidence for distinct patterns of maladaptive decision-making on each side of the arousal inverted u-shaped curve, differentially affecting participants' ability to generate stable evidence-based strategies, and introduces wake-sleep and physical exercise transitions as complementary experimental models for investigating neural and cognitive dynamics.


Assuntos
Nível de Alerta , Reversão de Aprendizagem , Humanos , Sono
17.
Eur J Neurosci ; 54(4): 5601-5619, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34250660

RESUMO

Body perceptual disturbances are an increasingly acknowledged set of symptoms and possible clinical markers of complex regional pain syndrome (CRPS), but the neurophysiological and neurocognitive changes that underlie them are still far from being clear. We adopted a multivariate and neurodynamical approach to the analysis of EEG modulations evoked by touch to highlight differences between patients and healthy controls, between affected and unaffected side of the body, and between "passive" (i.e., no task demands and equiprobable digit stimulation) and "active" tactile processing (i.e., where a digit discrimination task was administered and spatial probability manipulated). When correct identifications are considered, an early reduction in cortical decodability (28-56 ms) distinguishes CRPS patients from healthy volunteers. However, when error trials are included in the classifier's training, there is an unexpected increased decodability in the CRPS group compared with healthy volunteers (280-320 ms). These group differences in neural processing seemed to be driven by the affected rather than the unaffected side. We corroborated these findings with several exploratory analyses of neural representation dynamics and behavioural modelling, highlighting the need for single participant analyses. Although several limitations impacted the robustness and generalizability of these comparisons, the proposed analytical approach yielded promising insights (as well as possible biomarkers based on neural dynamics) into the relatively unexplored alterations of tactile decision-making and attentional control mechanisms in chronic CRPS.


Assuntos
Síndromes da Dor Regional Complexa , Ilusões , Percepção do Tato , Humanos , Tato
18.
Sci Rep ; 11(1): 2401, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504828

RESUMO

Mental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of "seeing with the mind's eye". In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli has not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.


Assuntos
Face , Rememoração Mental , Percepção Visual , Adulto , Algoritmos , Eletroencefalografia , Feminino , Humanos , Masculino , Modelos Teóricos , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
19.
J Neurosci ; 40(37): 7142-7154, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32801150

RESUMO

Humans' remarkable capacity to flexibly adapt their behavior based on rapid situational changes is termed cognitive control. Intuitively, cognitive control is thought to be affected by the state of alertness; for example, when drowsy, we feel less capable of adequately implementing effortful cognitive tasks. Although scientific investigations have focused on the effects of sleep deprivation and circadian time, little is known about how natural daily fluctuations in alertness in the regular awake state affect cognitive control. Here we combined a conflict task in the auditory domain with EEG neurodynamics to test how neural and behavioral markers of conflict processing are affected by fluctuations in alertness. Using a novel computational method, we segregated alert and drowsy trials from two testing sessions and observed that, although participants (both sexes) were generally sluggish, the typical conflict effect reflected in slower responses to conflicting information compared with nonconflicting information, as well as the moderating effect of previous conflict (conflict adaptation), were still intact. However, the typical neural markers of cognitive control-local midfrontal theta-band power changes-that participants show during full alertness were no longer noticeable when alertness decreased. Instead, when drowsy, we found an increase in long-range information sharing (connectivity) between brain regions in the same frequency band. These results show the resilience of the human cognitive control system when affected by internal fluctuations of alertness and suggest that there are neural compensatory mechanisms at play in response to physiological pressure during diminished alertness.SIGNIFICANCE STATEMENT The normal variability in alertness we experience in daily tasks is rarely taken into account in cognitive neuroscience. Here we studied neurobehavioral dynamics of cognitive control with decreasing alertness. We used the classic Simon task where participants hear the word "left" or "right" in the right or left ear, eliciting slower responses when the word and the side are incongruent-the conflict effect. Participants performed the task both while fully awake and while getting drowsy, allowing for the characterization of alertness modulating cognitive control. The changes in the neural signatures of conflict from local theta oscillations to a long-distance distributed theta network suggest a reconfiguration of the underlying neural processes subserving cognitive control when affected by alertness fluctuations.


Assuntos
Cognição , Conflito Psicológico , Ritmo Teta , Vigília , Adolescente , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino
20.
Neuroimage ; 223: 117305, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32861789

RESUMO

Transcranial magnetic stimulation (TMS) has been widely used in human cognitive neuroscience to examine the causal role of distinct cortical areas in perceptual, cognitive and motor functions. However, it is widely acknowledged that the effects of focal cortical stimulation can vary substantially between participants and even from trial to trial within individuals. Recent work from resting state functional magnetic resonance imaging (fMRI) studies has suggested that spontaneous fluctuations in alertness over a testing session can modulate the neural dynamics of cortical processing, even when participants remain awake and responsive to the task at hand. Here we investigated the extent to which spontaneous fluctuations in alertness during wake-to-sleep transition can account for the variability in neurophysiological responses to TMS. We combined single-pulse TMS with neural recording via electroencephalography (EEG) to quantify changes in motor and cortical reactivity with fluctuating levels of alertness defined objectively on the basis of ongoing brain activity. We observed rapid, non-linear changes in TMS-evoked responses with decreasing levels of alertness, even while participants remained responsive in the behavioural task. Specifically, we found that the amplitude of motor evoked potentials peaked during periods of EEG flattening, whereas TMS-evoked potentials increased and remained stable during EEG flattening and the subsequent occurrence of theta ripples that indicate the onset of NREM stage 1 sleep. Our findings suggest a rapid and complex reorganization of active neural networks in response to spontaneous fluctuations of alertness over relatively short periods of behavioural testing during wake-to-sleep transition.


Assuntos
Nível de Alerta/fisiologia , Potenciais Evocados , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Adulto , Eletroencefalografia , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA