Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
RMD Open ; 9(3)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37532471

RESUMO

OBJECTIVES: To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. METHODS: In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. RESULTS: IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). CONCLUSIONS: LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ.


Assuntos
Interferon Tipo I , Síndrome de Sjogren , Humanos , Biomarcadores , Hidroxicloroquina/uso terapêutico , Interferon Tipo I/metabolismo , Leflunomida/uso terapêutico , Leucócitos Mononucleares/metabolismo , Proteínas , RNA , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/tratamento farmacológico
2.
Arthritis Rheumatol ; 75(2): 279-292, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482877

RESUMO

OBJECTIVE: This study was undertaken to identify key disease pathways driving conventional dendritic cell (cDC) alterations in systemic sclerosis (SSc). METHODS: Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 patients with SSc, including all major disease subtypes. We performed differential expression analysis for the different SSc subtypes and healthy donors to uncover genes dysregulated in SSc. To identify biologically relevant pathways, we built a gene coexpression network using weighted gene correlation network analysis. We validated the role of key transcriptional regulators using chromatin immunoprecipitation (ChIP) sequencing and in vitro functional assays. RESULTS: We identified 17 modules of coexpressed genes in cDCs that correlated with SSc subtypes and key clinical traits, including autoantibodies, skin score, and occurrence of interstitial lung disease. A module of immunoregulatory genes was markedly down-regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted nuclear receptor 4A (NR4A) subfamily genes (NR4A1, NR4A2, NR4A3) as the key transcriptional regulators of inflammation. Indeed, ChIP-sequencing analysis indicated that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T cell activation. CONCLUSION: NR4A1, NR4A2, and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A family represents novel potential targets to restore cDC homeostasis in SSc.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Escleroderma Sistêmico , Humanos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regulação da Expressão Gênica , Expressão Gênica , Escleroderma Sistêmico/genética , Fibrose , Glicoproteínas/metabolismo , Antígenos CD1/genética
3.
Exp Dermatol ; 31(6): 962-969, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297512

RESUMO

Interleukin (IL)-12 and IL-23 are pro-inflammatory cytokines produced by dendritic cells (DCs) and associated with Psoriasis (Pso) and Psoriatic Arthritis (PsA) pathogenesis. Tofacitinib, a Janus kinase inhibitor, effectively suppresses inflammatory cascades downstream the IL-12/IL-23 axis in Pso and PsA patients. Here, we investigated whether Tofacitinib directly regulates IL-12/IL-23 production in DCs, and how this regulation reflects responses to Tofacitinib in Pso patients. We treated monocyte-derived dendritic cells and myeloid dendritic cells with Tofacitinib and stimulated cells with either lipopolysaccharide (LPS) or a combination of LPS and IFN-γ. We assessed gene expression by qPCR, obtained skin microarray and blood Olink data and clinical parameters of Pso patients treated with Tofacitinib from public data sets. Our results indicate that in DCs co-stimulated with LPS and IFN-γ, but not with LPS alone, Tofacitinib leads to the decreased expression of IL-23/IL-12 shared subunit IL12B (p40). In Tofacitinib-treated Pso patients, IL-12 expression and psoriasis area and severity index (PASI) are significantly reduced in patients with higher IFN-γ at baseline. These findings demonstrate for the first time that Tofacitinib suppresses IL-23/IL-12 shared subunit IL12B in DCs upon active IFN-γ signaling, and that Pso patients with higher IFN-γ baseline levels display improved clinical response after Tofacitinib treatment.


Assuntos
Interferon gama , Subunidade p40 da Interleucina-12 , Inibidores de Janus Quinases , Piperidinas , Psoríase , Pirimidinas , Pele , Artrite Psoriásica/tratamento farmacológico , Células Dendríticas/imunologia , Humanos , Interferon gama/metabolismo , Subunidade p40 da Interleucina-12/antagonistas & inibidores , Subunidade p40 da Interleucina-12/sangue , Subunidade p40 da Interleucina-12/metabolismo , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Lipopolissacarídeos/imunologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Psoríase/tratamento farmacológico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pele/efeitos dos fármacos , Pele/imunologia
4.
Cell Rep ; 38(1): 110189, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986347

RESUMO

Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.


Assuntos
Matriz Extracelular/patologia , Miofibroblastos/metabolismo , Fator Plaquetário 4/metabolismo , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/patologia , Animais , Bleomicina/toxicidade , Linhagem Celular , Colágeno/biossíntese , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/citologia , Pericitos/metabolismo , Fator Plaquetário 4/genética , Células Estromais/citologia , Células Estromais/metabolismo
5.
Rheumatology (Oxford) ; 61(6): 2682-2693, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559222

RESUMO

OBJECTIVE: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear. The aim of this study was to elucidate the mechanisms leading to CXCL4 production. METHODS: Plasmacytoid dendritic cells (pDCs) from 97 healthy controls and 70 SSc patients were cultured in the presence of hypoxia or atmospheric oxygen level and/or stimulated with several toll-like receptor (TLR) agonists. Further, pro-inflammatory cytokine production, CXCL4, hypoxia-inducible factor (HIF) -1α and HIF-2α gene and protein expression were assessed using ELISA, Luminex, qPCR, FACS and western blot assays. RESULTS: CXCL4 release was potentiated only when pDCs were simultaneously exposed to hypoxia and TLR9 agonist (P < 0.0001). Here, we demonstrated that CXCL4 production is dependent on the overproduction of mitochondrial reactive oxygen species (mtROS) (P = 0.0079) leading to stabilization of HIF-2α (P = 0.029). In addition, we show that hypoxia is fundamental for CXCL4 production by umbilical cord CD34 derived pDCs. CONCLUSION: TLR-mediated activation of immune cells in the presence of hypoxia underpins the pathogenic production of CXCL4 in SSc. Blocking either mtROS or HIF-2α pathways may therapeutically attenuate the contribution of CXCL4 to SSc and other inflammatory diseases driven by CXCL4.


Assuntos
Fator Plaquetário 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico , Receptor Toll-Like 9 , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
6.
J Invest Dermatol ; 142(2): 402-413, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34333017

RESUMO

Dermal fibroblasts are strategically positioned underneath the basal epidermis layer to support keratinocyte proliferation and extracellular matrix production. In inflammatory conditions, these fibroblasts produce cytokines and chemokines that promote the chemoattraction of immune cells into the dermis and the hyperplasia of the epidermis, two characteristic hallmarks of psoriasis. However, how dermal fibroblasts specifically contribute to psoriasis development remains largely uncharacterized. In this study, we investigated through which cytokines and signaling pathways dermal fibroblasts contribute to the inflammatory features of psoriatic skin. We show that dermal fibroblasts from lesional psoriatic skin are important producers of inflammatory mediators, including IL-6, CXCL8, and CXCL2. This increased cytokine production was found to be regulated by ZFP36 family members ZFP36, ZFP36L1, and ZFP36L2, RNA-binding proteins with mRNA-degrading properties. In addition, the expression of ZFP36 family proteins was found to be reduced in chronic inflammatory conditions that mimic psoriatic lesional skin. Collectively, these results indicate that dermal fibroblasts are important producers of cytokines in psoriatic skin and that reduced expression of ZFP36 members in psoriasis dermal fibroblasts contributes to their inflammatory phenotype.


Assuntos
Fator 1 de Resposta a Butirato/metabolismo , Fibroblastos/metabolismo , Psoríase/imunologia , Fatores de Transcrição/metabolismo , Tristetraprolina/metabolismo , Biópsia , Fator 1 de Resposta a Butirato/genética , Estudos de Casos e Controles , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Mediadores da Inflamação/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Psoríase/patologia , Fatores de Transcrição/genética , Tristetraprolina/genética
7.
Front Immunol ; 12: 701656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413853

RESUMO

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by infiltration of the exocrine glands and prominent B cell hyperactivity. Considering the key role of monocytes in promoting B cell hyperactivity, we performed RNA-sequencing analysis of CD14+ monocytes from patients with pSS, non-Sjögren's sicca (nSS), and healthy controls (HC). We demonstrated that the transcriptomic profile of pSS patients is enriched in intermediate and non-classical monocyte profiles, and confirmed the increased frequency of non-classical monocytes in pSS patients by flow-cytometry analysis. Weighted gene co-expression network analysis identified four molecular signatures in monocytes from pSS patients, functionally annotated for processes related with translation, IFN-signaling, and toll-like receptor signaling. Systemic and local inflammatory features significantly correlated with the expression of these signatures. Furthermore, genes highly associated with clinical features in pSS were identified as hub-genes for each signature. Unsupervised hierarchical cluster analysis of the hub-genes identified four clusters of nSS and pSS patients, each with distinct inflammatory and transcriptomic profiles. One cluster showed a significantly higher percentage of pSS patients with higher prevalence of anti-SSA autoantibodies, interferon-score, and erythrocyte sedimentation rate compared to the other clusters. Finally, we showed that the identified transcriptomic differences in pSS monocytes were induced in monocytes of healthy controls by exposure to serum of pSS patients. Representative hub-genes of all four signatures were partially inhibited by interferon-α/ß receptor blockade, indicating that the circulating inflammatory mediators, including type I interferons have a significant contribution to the altered transcriptional profile of pSS-monocytes. Our study suggests that targeting key circulating inflammatory mediators, such as type I interferons, could offer new insights into the important pathways and mechanisms driving pSS, and holds promise for halting immunopathology in Sjögren's Syndrome.


Assuntos
Inflamação/genética , Monócitos/patologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/patologia , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/genética , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interferon Tipo I/genética , Receptores de Lipopolissacarídeos/genética , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Receptores Toll-Like/genética , Adulto Jovem
8.
J Clin Med ; 10(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573268

RESUMO

Compelling evidence shows the involvement of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc) pathogenesis. This study investigated whether microRNAs (miRNAs) are involved in the dysregulation of pDCs in SSc patients already at early stages. RNA from circulating pDCs was isolated from two independent cohorts of SSc patients with different disease phenotypes, and individuals with Raynaud's phenomenon, for microRNA profiling and RNA-sequencing analysis. Proteomic analysis was exploited to identify novel direct miRNA targets at the protein level. Twelve and fifteen miRNAs were differentially expressed in at least one group of patients compared to healthy controls in discovery cohort I and II, respectively. Of note, miR-126 and miR-139-5p were upregulated in both preclinical and definite SSc patients and correlated with the expression of type I interferon (IFN)-responsive genes. Toll-like receptor 9 (TLR9) stimulation of healthy pDCs upregulated the expression of both miRNAs, similarly to what was observed in patients. The proteomic analysis identified USP24 as a novel target of miR-139-5p. The expression level of USP24 was inversely correlated with miR-139-5p expression in SSc patients and induced by TLR9 stimulation in healthy pDCs. These findings demonstrated that the miRNA profile is altered in pDCs of SSc patients already at early stages of the disease and indicate their potential contribution to pDC activation observed in patients.

9.
Front Immunol ; 11: 2149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042127

RESUMO

Fibrosis is a condition shared by numerous inflammatory diseases. Our incomplete understanding of the molecular mechanisms underlying fibrosis has severely hampered effective drug development. CXCL4 is associated with the onset and extent of fibrosis development in multiple inflammatory and fibrotic diseases. Here, we used monocyte-derived cells as a model system to study the effects of CXCL4 exposure on dendritic cell development by integrating 65 longitudinal and paired whole genome transcriptional and methylation profiles. Using data-driven gene regulatory network analyses, we demonstrate that CXCL4 dramatically alters the trajectory of monocyte differentiation, inducing a novel pro-inflammatory and pro-fibrotic phenotype mediated via key transcriptional regulators including CIITA. Importantly, these pro-inflammatory cells directly trigger a fibrotic cascade by producing extracellular matrix molecules and inducing myofibroblast differentiation. Inhibition of CIITA mimicked CXCL4 in inducing a pro-inflammatory and pro-fibrotic phenotype, validating the relevance of the gene regulatory network. Our study unveils that CXCL4 acts as a key secreted factor driving innate immune training and forming the long-sought link between inflammation and fibrosis.


Assuntos
Células Dendríticas/citologia , Fibrose/imunologia , Redes Reguladoras de Genes , Inflamação/imunologia , Fator Plaquetário 4/fisiologia , Transcriptoma , Células Cultivadas , Técnicas de Reprogramação Celular , Metilação de DNA , Árvores de Decisões , Decitabina/farmacologia , Fibroblastos , Fibrose/genética , Humanos , Inflamação/genética , Monócitos/citologia , Análise de Escalonamento Multidimensional , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Poli I-C/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA-Seq , Transativadores/antagonistas & inibidores , Transativadores/fisiologia
10.
J Autoimmun ; 111: 102444, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32284212

RESUMO

OBJECTIVE: To analyze how monocyte and macrophage exposure to CXCL4 induces inflammatory and fibrotic processes observed in Systemic sclerosis (SSc) patients. METHODS: In six independent experiments, monocytes of healthy controls (HC) and SSc patients were stimulated with CXCL4, TLR-ligands, IFNɑ or TGFß and the secretion of cytokines in the supernatant was assessed by multiplex immunoassays. PDGF-BB production by monocyte-derived macrophages was quantified using immunoassays. The number of monocytes and PDGF-BB in circulation was quantified in HC and SSc patients with the Sysmex XT-1800i haematology counter and immunoassays. Intracellular PDGF-BB was quantified in monocytes by Western blot. PDGF-receptor inhibition was achieved using siRNA-mediated knockdown or treatment with Crenolanib. The production of inflammatory mediators and extracellular matrix (ECM) components by dermal fibroblasts was analyzed by qPCR, ELISA and ECM deposition assays. RESULTS: SSc and HC monocytes released PDGF-BB upon stimulation with CXCL4. Conversely, TLR ligands, IFNɑ or TGFß did not induce PDGF-bb release. PDGF-BB plasma levels were significantly (P = 0.009) higher in diffuse SSc patients (n = 19), compared with HC (n = 21). In healthy dermal fibroblasts, PDGF-BB enhanced TNFɑ-induced expression of inflammatory cytokines and increased ECM production. Comparable results were observed in fibroblasts cultured in supernatant taken from macrophages stimulated with CXCL4. This effect was almost completely abrogated by inhibition of the PDGF-receptor using Crenolanib. CONCLUSION: Our findings demonstrate that CXCL4 can drive fibroblast activation indirectly via PDGF-BB production by myeloid cells. Hence, targeting PDGF-BB or CXCL4-induced PDGF-BB release could be clinically beneficial for patients with SSc.


Assuntos
Becaplermina/metabolismo , Fibroblastos/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/imunologia , Adulto , Idoso , Benzimidazóis/farmacologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/farmacologia , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores
11.
Eur J Immunol ; 50(1): 119-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424086

RESUMO

Systemic sclerosis (SSc), systemic lupus erythematosus (SLE) and primary Sjögrens syndrome (pSS) are clinically distinct systemic autoimmune diseases (SADs) that share molecular pathways. We quantified the frequency of circulating immune-cells in 169 patients with these SADs and 44 healty controls (HC) using mass-cytometry and assessed the diagnostic value of these results. Alterations in the frequency of immune-cell subsets were present in all SADs compared to HC. Most alterations, including a decrease of CD56hi NK-cells in SSc and IgM+ Bcells in pSS, were disease specific; only a reduced frequency of plasmacytoid dendritic cells was common between all SADs Strikingly, hierarchical clustering of SSc patients identified 4 clusters associated with different clinical phenotypes, and 9 of the 12 cell subset-alterations in SSc were also present during the preclinical-phase of the disease. Additionally, we found a strong association between the use of prednisone and alterations in B-cell subsets. Although differences in immune-cell frequencies between these SADs are apparent, the discriminative value thereof is too low for diagnostic purposes. Within each disease, mass cytometry analyses revealed distinct patterns between endophenotypes. Given the lack of tools enabling early diagnosis of SSc, our results justify further research into the value of cellular phenotyping as a diagnostic aid.


Assuntos
Citometria de Fluxo/métodos , Lúpus Eritematoso Sistêmico/imunologia , Escleroderma Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Adulto , Idoso , Feminino , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Masculino , Pessoa de Meia-Idade , Fenótipo , Escleroderma Sistêmico/diagnóstico , Síndrome de Sjogren/diagnóstico
12.
Eur J Immunol ; 50(1): 86-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713839

RESUMO

Non-Hodgkin orbital lymphoma (NHOL) and idiopathic orbital inflammation (IOI) are common orbital conditions with largely unknown pathophysiology that can be difficult to diagnose. In this study we aim to identify serum miRNAs associated with NHOL and IOI. We performed OpenArray® miRNA profiling in 33 patients and controls. Differentially expressed miRNAs were technically validated across technology platforms and replicated in an additional cohort of 32 patients and controls. We identified and independently validated a serum miRNA profile of NHOL that was remarkably similar to IOI and characterized by an increased expression of a cluster of eight miRNAs. Pathway enrichment analysis indicated that the miRNA-cluster is associated with immune-mediated pathways, which we supported by demonstrating the elevated expression of this cluster in serum of patients with other inflammatory conditions. The cluster contained miR-148a, a key driver of B-cell tolerance, and miR-365 that correlated with serum IgG and IgM concentrations. In addition, miR-29a and miR-223 were associated with blood lymphocyte and neutrophil populations, respectively. NHOL and IOI are characterized by an abnormal serum miRNA-cluster associated with immune pathway activation and linked to B cell and neutrophil dysfunction.


Assuntos
Inflamação/imunologia , Linfoma não Hodgkin/imunologia , MicroRNAs/imunologia , Doenças Orbitárias/imunologia , Neoplasias Orbitárias/imunologia , Adulto , Idoso , Feminino , Humanos , Inflamação/genética , Linfoma não Hodgkin/genética , Masculino , Pessoa de Meia-Idade , Doenças Orbitárias/genética , Neoplasias Orbitárias/genética
13.
Front Immunol ; 10: 2096, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552042

RESUMO

Primary Sjögren's syndrome (pSS) is a systemic auto-immune disease typified by dryness of the mouth and eyes. A majority of patients with pSS have a type-I interferon (IFN)-signature, which is defined as the increased expression of IFN-induced genes in circulating immune cells and is associated with increased disease activity. As plasmacytoid dendritic cells (pDC) are the premier type-I IFN-producing cells and are present at the site of inflammation, they are thought to play a significant role in pSS pathogenesis. Considering the lack of data on pDC regulation and function in pSS patients, we here provided the first in-depth molecular characterization of pSS pDCs. In addition, a group of patients with non-Sjögren's sicca (nSS) was included; these poorly studied patients suffer from complaints similar to pSS patients, but are not diagnosed with Sjögren's syndrome. We isolated circulating pDCs from two independent cohorts of patients and controls (each n = 31) and performed RNA-sequencing, after which data-driven networks and modular analysis were used to identify robustly reproducible transcriptional "signatures" of differential and co-expressed genes. Four signatures were identified, including an IFN-induced gene signature and a ribosomal protein gene-signature, that indicated pDC activation. Comparison with a dataset of in vitro activated pDCs showed that pSS pDCs have higher expression of many genes also upregulated upon pDC activation. Corroborating this transcriptional profile, pSS pDCs produced higher levels of pro-inflammatory cytokines, including type-I IFN, upon in vitro stimulation with endosomal Toll-like receptor ligands. In this setting, cytokine production was associated with expression of hub-genes from the IFN-induced and ribosomal protein gene-signatures, indicating that the transcriptional profile of pSS pDCs underlies their enhanced cytokine production. In all transcriptional analyses, nSS patients formed an intermediate group in which some patients were molecularly similar to pSS patients. Furthermore, we used the identified transcriptional signatures to develop a discriminative classifier for molecular stratification of patients with sicca. Altogether, our data provide in-depth characterization of the aberrant regulation of pDCs from patients with nSS and pSS and substantiate their perceived role in the immunopathology of pSS, supporting studies that target pDCs, type-I IFNs, or IFN-signaling in pSS.


Assuntos
Citocinas/imunologia , Células Dendríticas/imunologia , Síndrome de Sjogren/imunologia , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Síndrome de Sjogren/genética , Transcriptoma
14.
Mol Immunol ; 114: 524-534, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31518856

RESUMO

The chemokine CXCL4 has been implicated in several immune diseases. Exposure of monocyte-derived dendritic cells (moDCs) to CXCL4 potentiates the production of inflammatory cytokines in the presence of TLR3 or TLR7/8 agonists. Here we investigated the transcriptional and post-transcriptional events underlying the augmented inflammatory responses in CXCL4-moDCs. Our results indicate that CXCL4-moDCs display an increased expression and secretion of IL-12, IL-23, IL-6 and TNF upon TLR3 activation. Analysis of the cytokine transcripts for the presence of AU-rich elements (ARE), motifs necessary for ARE-mediated mRNA decay, revealed that all these cytokine transcripts are, at least in silico, possibly regulated at the level of mRNA stability. In vitro assays confirmed that mRNA stability of IL6 and TNF, but not IL12B and IL23A, is increased in CXCL4-moDCs. We next screened the expression of ARE-binding proteins (ARE-BPs) and found that TLR stimulation of CXCL4-moDCs induced tristetraprolin (TTP or ZFP36). Increased TTP mRNA expression was found to be a consequence of TTP phospho-mediated inactivation, which over time causes the protein to degrade its own mRNA. Concomitantly with TTP inactivation, we observed increased MAPK p38 signalling, upstream of TTP, in stimulated CXCL4-moDCs. P38 inhibition restored TTP activation and subsequently reduced the production of inflammatory cytokines. Finally, TTP knockdown in moDCs resulted in an increased production of IL6 and TNF after TLR stimulation. Overall, our study shows that the pro-inflammatory phenotype of CXCL4-moDCs relies in part on enhanced cytokine mRNA stability dictated by TTP inactivation.


Assuntos
Citocinas/metabolismo , Células Dendríticas/metabolismo , Monócitos/metabolismo , Fator Plaquetário 4/metabolismo , RNA Mensageiro/metabolismo , Humanos , Interleucina-12/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Estabilidade de RNA/fisiologia , Transdução de Sinais/fisiologia , Tristetraprolina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Ann Rheum Dis ; 78(4): 529-538, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30793699

RESUMO

BACKGROUND AND OBJECTIVE: Systemic sclerosis (SSc) is a severe autoimmune disease, in which the pathogenesis is dependent on both genetic and epigenetic factors. Altered gene expression in SSc monocytes, particularly of interferon (IFN)-responsive genes, suggests their involvement in SSc development. We investigated the correlation between epigenetic histone marks and gene expression in SSc monocytes. METHODS: Chromatin immunoprecipitation followed by sequencing (ChIPseq) for histone marks H3K4me3 and H3K27ac was performed on monocytes of nine healthy controls and 14 patients with SSc. RNA sequencing was performed in parallel to identify aberrantly expressed genes and their correlation with the levels of H3K4me3 and H3K27ac located nearby their transcription start sites. ChIP-qPCR assays were used to verify the role of bromodomain proteins, H3K27ac and STATs on IFN-responsive gene expression. RESULTS: 1046 and 534 genomic loci showed aberrant H3K4me3 and H3K27ac marks, respectively, in SSc monocytes. The expression of 381 genes was directly and significantly proportional to the levels of such chromatin marks present near their transcription start site. Genes correlated to altered histone marks were enriched for immune, IFN and antiviral pathways and presented with recurrent binding sites for IRF and STAT transcription factors at their promoters. IFNα induced the binding of STAT1 and STAT2 at the promoter of two of these genes, while blocking acetylation readers using the bromodomain BET family inhibitor JQ1 suppressed their expression. CONCLUSION: SSc monocytes have altered chromatin marks correlating with their IFN signature. Enzymes modulating these reversible marks may provide interesting therapeutic targets to restore monocyte homeostasis to treat or even prevent SSc.


Assuntos
Epigênese Genética , Código das Histonas/genética , Monócitos/imunologia , Escleroderma Sistêmico/genética , Adulto , Idoso , Azepinas/farmacologia , Estudos de Casos e Controles , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Histonas/genética , Humanos , Interferon-alfa/imunologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Escleroderma Sistêmico/imunologia , Triazóis/farmacologia
17.
Rheumatology (Oxford) ; 57(9): 1669-1674, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873766

RESUMO

Objective: To investigate miRNA expression in relation to transcriptomic changes in plasmacytoid dendritic cells (pDCs) in SLE and APS. pDCs are major producers of IFNα in SLE and APS, and miRNAs are emerging as regulators of pDC activation. Methods: miRNA and mRNA expression were measured by OpenArray and RNA-sequencing in pDCs of SLE, SLE + APS (APS secondary to SLE) and primary APS (PAPS) patients. The miRNA profile of patients was compared with the miRNA pattern of TLR7-activated pDCs. Results: Among 131 miRNAs detected in pDCs, 35, 17 and 21 had a significantly lower level of expression in SLE, SLE + APS and PAPS patients, respectively, as compared with healthy controls (HC). Notably, the miRNA profile did not significantly differ between SLE and APS, but was driven by the presence or absence of an IFN signature. TLR7 stimulation induced a general downregulation of miRNAs, similar to the pattern observed in SLE and APS patients. miR-361-5p, miR-128-3p and miR-181a-2-3p expression was lower in patients with a high IFN signature (false discovery rate <0.05) as compared with patients with a low IFN signature and HCs. Pathway enrichment on the overlap of miRNA targets and upregulated genes from the RNAseq indicated that these miRNAs are involved in pDC activation and apoptosis. Conclusion: Lower miRNA expression in pDCs is shared between SLE, SLE + APS and PAPS and is related to the IFN signature. As pDCs are the alleged source of the IFN signature in these patients, a better understanding of the molecular mechanisms/pathways leading to pDC dysregulation in SLE and APS might open novel pathways for therapeutic intervention.


Assuntos
Síndrome Antifosfolipídica/genética , Células Dendríticas/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética , Receptor 7 Toll-Like/genética , Adulto , Síndrome Antifosfolipídica/metabolismo , Células Dendríticas/patologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Masculino , MicroRNAs/biossíntese , RNA Mensageiro/genética , Receptor 7 Toll-Like/biossíntese
18.
Invest Ophthalmol Vis Sci ; 59(2): 878-888, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29435587

RESUMO

Purpose: The cause of noninfectious uveitis (NIU) is poorly understood but is considered to be mediated by a complex interplay between genetic, environmental, and-relatively unexplored-epigenetic factors. MicroRNAs (miRNAs) are noncoding small RNAs that are important epigenetic regulators implicated in pathologic signaling. Therefore, we mapped the circulating miRNA-ome of NIU patients and studied miRNA perturbations within the broader context of the immune system. Methods: We designed a strategy to robustly identify changes in the miRNA profiles of two independent cohorts totaling 54 untreated patients with active and eye-restricted disease and 26 age-matched controls. High-resolution miRNA-ome data were obtained by TaqMan OpenArray technology and subsequent RT-qPCR. Flow cytometry data, and proteomic data spanning the cellular immune system, were used to map the uveitis-miRNA signature to changes in the composition of specific leukocyte subsets in blood. Results: Using stringent selection criteria, we identified and independently validated an miRNA cluster that is associated with NIU. Pathway enrichment analysis for genes targeted by this cluster revealed significant enrichment for the PI3K/Akt, MAPK, FOXO, and VEGF signaling pathways, and photoreceptor development. In addition, unsupervised multidomain analyses linked the presence of the uveitis-associated miRNA cluster to a different composition of leukocyte subsets, more specifically, CD16+CD11c+HLA-DR- cells. Conclusions: Together, this study identified a unique miRNA cluster associated with NIU that was related to changes in leukocyte subsets demonstrating systemic changes in epigenetic regulation underlying NIU.


Assuntos
Perfilação da Expressão Gênica , Inflamação/genética , Subpopulações de Linfócitos/imunologia , MicroRNAs/genética , Transcriptoma , Uveíte/genética , Adulto , Antígeno CD11c/imunologia , Análise por Conglomerados , Feminino , Citometria de Fluxo , Antígenos HLA-DR/imunologia , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Receptores de IgG/imunologia , Uveíte/imunologia
19.
PLoS One ; 13(2): e0193157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447268

RESUMO

BACKGROUND: Considering the important role of miRNAs in the regulation of post-transcriptional expression of target genes, we investigated circulating small non-coding RNAs (snc)RNA levels in patients with primary Sjögren's syndrome (pSS). In addition we assessed if serum sncRNA levels can be used to differentiate patients with specific disease features. METHODS: Serum RNA was isolated from 37 pSS patients as well as 21 patients with incomplete Sjögren's Syndrome (iSS) and 17 healthy controls (HC) allocated to two independent cohorts: discovery and validation. OpenArray profiling of 758 sncRNAs was performed in the discovery cohort. Selected sncRNAs were measured in the validation cohort using single-assay RT-qPCR. In addition, unsupervised hierarchical clustering was performed within the pSS group. RESULTS: Ten sncRNAs were differentially expressed between the groups in the array. In the validation cohort, we confirmed the increased expression of U6-snRNA and miR-661 in the iSS group as compared to HC. We were unable to validate differential expression of any miRNAs in the pSS group. However, within this group several miRNAs correlated with laboratory parameters. Unsupervised clustering distinguished three clusters of pSS patients. Patients in one cluster showed significantly higher serum IgG, prevalence of anti-SSB autoantibodies, IFN-score, and decreased leukocyte counts compared to the two other clusters. CONCLUSION: We were unable to identify any serum sncRNAs with differential expression in pSS patients. However, we show that circulating miRNA levels are associated with disease parameters in pSS patients and can be used to distinguish pSS patients with more severe B cell hyperactivity. As several of these miRNAs are implicated in the regulation of B cells, they may play a role in the perpetuation of the disease.


Assuntos
Linfócitos B/imunologia , Interferons/sangue , Pequeno RNA não Traduzido/sangue , Síndrome de Sjogren/sangue , Adulto , Idoso , Autoanticorpos/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Síndrome de Sjogren/imunologia , Adulto Jovem
20.
J Autoimmun ; 89: 162-170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29371048

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. METHODS: The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjögren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. RESULTS: 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. CONCLUSIONS: Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc.


Assuntos
Células Endoteliais/fisiologia , Fibroblastos/fisiologia , MicroRNAs/genética , Escleroderma Sistêmico/genética , Pele/patologia , Adulto , Idoso , Estudos de Coortes , Feminino , Fibrose , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA