RESUMO
Flexible electronic skin with features that include sensing, processing, and responding to stimuli have transformed human-robot interactions. However, more advanced capabilities, such as human-like self-protection modalities with a sense of pain, sign of injury, and healing, are more challenging. Herein, a novel, flexible, and robust diffusive memristor based on a copolymer of chlorotrifluoroethylene and vinylidene fluoride (FK-800) as an artificial nociceptor (pain sensor) is reported. Devices composed of Ag/FK-800/Pt have outstanding switching endurance >106 cycles, orders of magnitude higher than any other two-terminal polymer/organic memristors in literature (typically 102 -103 cycles). In situ conductive atomic force microscopy is employed to dynamically switch individual filaments, which demonstrates that conductive filaments correlate with polymer grain boundaries and FK-800 has superior morphological stability under repeated switching cycles. It is hypothesized that the high thermal stability and high elasticity of FK-800 contribute to the stability under local Joule heating associated with electrical switching. To mimic biological nociceptors, four signature nociceptive characteristics are demonstrated: threshold triggering, no adaptation, relaxation, and sensitization. Lastly, by integrating a triboelectric generator (artificial mechanoreceptor), memristor (artificial nociceptor), and light emitting diode (artificial bruise), the first bioinspired injury response system capable of sensing pain, showing signs of injury, and healing, is demonstrated.
Assuntos
Nociceptores , Polímeros , Condutividade Elétrica , Humanos , Mecanorreceptores , DorRESUMO
Typically, mechanical metamaterial properties are programmed and set when the architecture is designed and constructed, and do not change in response to shifting environmental conditions or application requirements. We present a new class of architected materials called field responsive mechanical metamaterials (FRMMs) that exhibit dynamic control and on-the-fly tunability enabled by careful design and selection of both material composition and architecture. To demonstrate the FRMM concept, we print complex structures composed of polymeric tubes infilled with magnetorheological fluid suspensions. Modulating remotely applied magnetic fields results in rapid, reversible, and sizable changes of the effective stiffness of our metamaterial motifs.