RESUMO
How do language learners avoid the production of verb argument structure overgeneralization errors ( *The clown laughed the man c.f. The clown made the man laugh), while retaining the ability to apply such generalizations productively when appropriate? This question has long been seen as one that is both particularly central to acquisition research and particularly challenging. Focussing on causative overgeneralization errors of this type, a previous study reported a computational model that learns, on the basis of corpus data and human-derived verb-semantic-feature ratings, to predict adults' by-verb preferences for less- versus more-transparent causative forms (e.g., * The clown laughed the man vs The clown made the man laugh) across English, Hebrew, Hindi, Japanese and K'iche Mayan. Here, we tested the ability of this model (and an expanded version with multiple hidden layers) to explain binary grammaticality judgment data from children aged 4;0-5;0, and elicited-production data from children aged 4;0-5;0 and 5;6-6;6 ( N=48 per language). In general, the model successfully simulated both children's judgment and production data, with correlations of r=0.5-0.6 and r=0.75-0.85, respectively, and also generalized to unseen verbs. Importantly, learners of all five languages showed some evidence of making the types of overgeneralization errors - in both judgments and production - previously observed in naturalistic studies of English (e.g., *I'm dancing it). Together with previous findings, the present study demonstrates that a simple learning model can explain (a) adults' continuous judgment data, (b) children's binary judgment data and (c) children's production data (with no training of these datasets), and therefore constitutes a plausible mechanistic account of the acquisition of verbs' argument structure restrictions.
RESUMO
This preregistered study tested three theoretical proposals for how children form productive yet restricted linguistic generalizations, avoiding errors such as *The clown laughed the man, across three age groups (5-6â¯years, 9-10â¯years, adults) and five languages (English, Japanese, Hindi, Hebrew and K'iche'). Participants rated, on a five-point scale, correct and ungrammatical sentences describing events of causation (e.g., *Someone laughed the man; Someone made the man laugh; Someone broke the truck; ?Someone made the truck break). The verb-semantics hypothesis predicts that, for all languages, by-verb differences in acceptability ratings will be predicted by the extent to which the causing and caused event (e.g., amusing and laughing) merge conceptually into a single event (as rated by separate groups of adult participants). The entrenchment and preemption hypotheses predict, for all languages, that by-verb differences in acceptability ratings will be predicted by, respectively, the verb's relative overall frequency, and frequency in nearly-synonymous constructions (e.g., X made Y laugh for *Someone laughed the man). Analysis using mixed effects models revealed that entrenchment/preemption effects (which could not be distinguished due to collinearity) were observed for all age groups and all languages except K'iche', which suffered from a thin corpus and showed only preemption sporadically. All languages showed effects of event-merge semantics, except K'iche' which showed only effects of supplementary semantic predictors. We end by presenting a computational model which successfully simulates this pattern of results in a single discriminative-learning mechanism, achieving by-verb correlations of around râ¯=â¯0.75 with human judgment data.