RESUMO
AIM: Obstructive sleep apnea (OSA) is a growing health problem affecting nearly 1 billion people worldwide. The landmark feature of OSA is chronic intermittent hypoxia (CIH), accounting for multiple organ damage, including heart disease. CIH profoundly alters both visceral white adipose tissue (WAT) and heart structure and function, but little is known regarding inter-organ interaction in the context of CIH. We recently showed that visceral WAT senescence drives myocardial alterations in aged mice without CIH. Here, we aimed at investigating whether CIH induces a premature visceral WAT senescent phenotype, triggering subsequent cardiac remodeling. METHODS: In a first experiment, 10-week-old C57bl6J male mice (n = 10/group) were exposed to 14 days of CIH (8 h daily, 5%-21% cyclic inspired oxygen fraction, 60 s per cycle). In a second series, mice were submitted to either epididymal WAT surgical lipectomy or sham surgery before CIH exposure. Finally, we used p53 deficient mice or Wild-type (WT) littermates, also exposed to the same CIH protocol. Epididymal WAT was assessed for fibrosis, DNA damages, oxidative stress, markers of senescence (p16, p21, and p53), and inflammation by RT-qPCR and histology, and myocardium was assessed for fibrosis and cardiomyocyte hypertrophy. RESULTS: CIH-induced epididymal WAT remodeling characterized by increased fibrosis, oxidative stress, DNA damage response, inflammation, and increased expression of senescent markers. CIH-induced epididymal WAT remodeling was associated with subtle and early myocardial interstitial fibrosis. Both epididymal WAT surgical lipectomy and p53 deletion prevented CIH-induced myocardial fibrosis. CONCLUSION: Short-term exposure to CIH induces epididymal WAT senescent remodeling and cardiac interstitial fibrosis, the latter being prevented by lipectomy. This finding strongly suggests visceral WAT senescence as a new target to mitigate OSA-related cardiac disorders.
Assuntos
Tecido Adiposo Branco , Fibrose , Hipóxia , Camundongos Endogâmicos C57BL , Animais , Masculino , Hipóxia/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Camundongos , Fibrose/metabolismo , Senescência Celular , Epididimo/metabolismo , Epididimo/patologia , Miocárdio/metabolismo , Miocárdio/patologiaRESUMO
Sympathetic overactivity caused by chronic intermittent hypoxia is a hallmark of obstructive sleep apnea. A high sympathetic tone elicits increases in plasma free fatty acid and insulin. Our objective was to assess the impact of 14 nights of chronic intermittent hypoxia exposure on sympathetic activity, glucose control, lipid profile and subcutaneous fat tissue remodelling in non-obese healthy humans. In this prospective, double-blinded crossover study, 12 healthy subjects were randomized, among them only nine underwent the two phases of exposures of 14 nights chronic intermittent hypoxia versus air. Sympathetic activity was measured by peroneal microneurography (muscle sympathetic nerve activity) before and after each exposure. Fasting glucose, insulin, C-peptide and free fatty acid were assessed at rest and during a multisampling oral glucose tolerance test. We assessed histological remodelling, adrenergic receptors, lipolysis and lipogenesis genes expression and functional changes of the adipose tissue. Two weeks of exposure of chronic intermittent hypoxia versus ambient air significantly increased sympathetic activity (p = 0.04). Muscle sympathetic nerve activity increased from 24.5 [18.9; 26.8] before to 21.7 [13.8; 25.7] after ambient air exposure, and from 20.6 [17.4; 23.9] before to 28.0 [24.4; 31.5] bursts per min after exposure to chronic intermittent hypoxia. After chronic intermittent hypoxia, post-oral glucose tolerance test circulating free fatty acid area under the curve increased (p = 0.05) and free fatty acid sensitivity to insulin decreased (p = 0.028). In adipocyte tissue, intermittent hypoxia increased expression of lipolysis genes (adipocyte triglyceride lipase and hormone-sensitive lipase) and lipogenesis genes (fatty acid synthase; p < 0.05). In this unique experimental setting in healthy humans, chronic intermittent hypoxia induced high sympathetic tone, lipolysis and decreased free fatty acid sensitivity to insulin. This might participate in the trajectory to systemic insulin resistance and diabetes for patients with obstructive sleep apnea.
RESUMO
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Assuntos
Cardiopatias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/genética , Animais , Espécies Reativas de Oxigênio/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fosforilação Oxidativa , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/genéticaRESUMO
AIM: We tested the hypothesis that low testosterone alters the effects of intermittent hypoxia (IH) on glucose homeostasis, hepatic oxidative stress, and transcriptomic profile in male mice. METHODS: We used sham-operated or orchiectomized (ORX) mice exposed to normoxia (Nx) or IH for 2 weeks. We performed fasting insulin and glucose tolerance tests and assessed fasting and postprandial insulin resistance with the HOMA-IR. The activity of hepatic prooxidant (NADPH oxidase-NOX), antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase-SOD, Cat, GPx), lipid peroxidation (MDA concentration), and the total concentration of glutathione (GSH) were measured under postprandial conditions. mRNA sequencing and pathway enrichment analyses were used to identify hepatic genes underlying the interactions between IH and testosterone. RESULTS: In Sham mice, IH improves fasting insulin sensitivity and glucose tolerance, while there are no effects of IH in ORX mice. In ORX mice, IH induces postprandial hyperinsulinemia, insulin resistance, and a prooxidant profile of enzyme activity (low SOD activity) without altering hepatic MDA and GSH content. ORX and IH altered the expression of genes involved in oxidoreductase activities, cytochromes-dependent pathways, and glutathione metabolism. Among the genes upregulated in ORX-IH mice, the flavin-containing monooxygenases (FMO) are particularly relevant since these are potent hepatic antioxidants that could help prevent overt oxidative stress in ORX-IH mice. CONCLUSION: Low levels of testosterone in male mice exposed to IH induce post-prandial hyperinsulinemia and insulin resistance and determine the mechanisms by which the liver handles IH-induced oxidative stress.
Assuntos
Resistência à Insulina , Oxigenases , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Testosterona/metabolismo , Fígado/metabolismo , Hipóxia/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucose/metabolismoRESUMO
Obstructive sleep apnea syndrome (OSAS) is associated with chronic intermittent hypoxia (cIH) that causes disturbances in glucose and lipid metabolism. Animals exposed to cIH show lower body weight and food intake, but the protein-energy metabolism has never been investigated. Here, to address the gap, we studied the impact of cIH on nutritional status in rats. A total of 24 male Wistar rats were randomized into 3 groups (n = 8): a control group (Ctrl), a cIH group (cIH) exposed to cIH (30 s 21-30 s 5% fraction of inspired oxygen, 8 h per day, for 14 days), and a pair-fed group (PF) exposed to normoxia with food intake adjusted to the intake of the cIH group rats with anorexia. Body weight and food intake were measured throughout the study. After 14 days, the rats were euthanized, the organs were collected, weighed, and the liver, intestine mucosa, and muscles were snap-frozen to measure total protein content. Food intake was decreased in the cIH group. Body weight was significantly lower in the cIH group only (-11%, p < 0.05). Thymus and liver weight as well as EDL protein content tended to be lower in the cIH group than in the Ctrl and PF groups. Jejunum and ileum mucosa protein contents were lower in the cIH group compared to the PF group. cIH causes a slight impairment of nutritional status and immunity. This pre-clinical work argues for greater consideration of malnutrition in care for OSAS patients. Further studies are warranted to devise an adequate nutritional strategy.
RESUMO
Intermittent hypoxia (IH) is a landmark of obstructive sleep apnea (OSA) at the core of the cardiovascular consequences of OSA. IH triggers oxidative stress, a major underlying mechanism for elevated blood pressure (BP) and increased infarct size. L-citrulline is an amino acid that has been demonstrated to be protective of the cardiovascular system and exert pleiotropic effects. Therefore, we tested the impact of citrulline supplementation on IH-induced increase in BP and infarct size. Four groups of rats exposed to normoxia (N) or IH [14 days (d), 8 h/day, 30 s-O2 21%/30 s-O2 5%] and were supplemented or not with citrulline (1 g·kg-1·d-1). After 14 d, BP was measured, and hearts were submitted to global ischemia-reperfusion to measure infarct size. Histological and biochemical analyses were conducted on hearts and aorta to assess oxidative stress. Citrulline significantly reduced BP (-9.92%) and infarct size (-18.22%) under IH only. In the aorta, citrulline supplementation significantly decreased superoxide anion and nitrotyrosine levels under IH and abolished the IH-induced decrease in nitrite. Citrulline supplementation significantly decreased myocardial superoxide anion levels and xanthine oxidase enzyme activity under IH. Citrulline shows a cardioprotective capacity by limiting IH-induced pro-oxidant activity. Our results suggest that citrulline might represent a new pharmacological strategy in OSA patients with high cardiovascular risk.
RESUMO
RATIONALE: Intermittent hypoxia (IH) is one of the main features of sleep-disordered breathing (SDB). Recent findings indicate that hypoxia inducible factor-1 (HIF-1) promotes cardiomyocytes apoptosis during chronic IH, but the mechanisms involved remain to be elucidated. Here, we hypothesize that IH-induced ER stress is associated with mitochondria-associated ER membrane (MAM) alteration and mitochondrial dysfunction, through HIF-1 activation. METHODS: Right atrial appendage biopsies from patients with and without SDB were used to determine HIF-1α, Grp78 and CHOP expressions. Wild-type and HIF-1α+/- mice were exposed to normoxia (N) or IH (21-5% O2, 60 cycles/h, 8 h/day) for 21 days. Expressions of HIF-1α, Grp78 and CHOP, and apoptosis, were measured by Western blot and immunochemistry. In isolated cardiomyocytes, we examined structural integrity of MAM by proximity ligation assay and their function by measuring ER-to-mitochondria Ca2+ transfer by confocal microscopy. Finally, we measured mitochondrial respiration using oxygraphy and calcium retention capacity (CRC) by spectrofluorometry. MAM structure was also investigated in H9C2 cells incubated with 1 mM CoCl2, a potent HIF-1α inducer. RESULTS: In human atrial biopsies and mice, IH induced HIF-1 activation, ER stress and apoptosis. IH disrupted MAM, altered Ca2+ homeostasis, mitochondrial respiration and CRC. Importantly, IH had no effect in HIF-1α+/- mice. Similar to what observed under IH, HIF-1α overexpression was associated with MAM alteration in H9C2. CONCLUSION: IH-induced ER stress, MAM alterations and mitochondrial dysfunction were mediated by HIF-1; all these intermediate mechanisms ultimately inducing cardiomyocyte apoptosis. This suggests that HIF-1 modulation might limit the deleterious cardiac effects of SDB.
RESUMO
AIM: Intermittent hypoxia (IH) is considered to be a major contributor to obstructive sleep apnoea-related cardiovascular consequences. The present meta-analysis aimed to assess the effects of IH on cardiac remodelling, function and infarct size after myocardial ischaemia across different rodent species and IH severities. METHODS AND RESULTS: Relevant articles from PubMed, Embase and Web of Science were screened. We performed a random effect meta-analysis to assess the effect of IH on myocardium in rodents by using standardised mean difference (SMD). Studies using rodents exposed to IH and outcomes related to cardiac remodelling, contractile function and response to myocardial ischaemia-reperfusion were included. 5217 articles were screened and 92 were included, demonstrating that IH exposure induced cardiac remodelling, characterised by cardiomyocyte hypertrophy (cross-sectional area: SMD=2.90, CI (0.82-4.98), I2=94.2%), left ventricular (LV) dilation (LV diameter: SMD=0.64, CI (0.18-1.10), I2=88.04%), interstitial fibrosis (SMD=5.37, CI (3.22-7.53), I2=94.8) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labelling: SMD=6.70, CI (2.96-10.44), I2=95.9). These structural changes were accompanied by a decrease in LV ejection fraction (SMD=-1.82, CI (-2.52--1.12), I2=94.22%). Importantly, most of the utilised IH protocols mimicked extremely severe hypoxic disease. Concerning infarct size, meta-regression analyses highlighted an ambivalent role of IH, depending on its severity. Indeed, IH exposure with inspiratory oxygen fraction (F IO2 ) <7% was associated with an increase in infarct size, whereas a reduced infarct size was reported for F IO2 levels above 10%. Heterogeneity between studies, small study effect and poor reporting of methods in included articles limited the robustness of the meta-analysis findings. CONCLUSION: This meta-analysis demonstrated that severe IH systematically induces cardiac remodelling and contractile dysfunction in rodents, which might trigger or aggravate chronic heart failure. Interestingly, this meta-analysis showed that, depending on stimulus severity, IH exhibits both protective and aggravating effects on infarct size after experimental ischaemia-reperfusion procedures.
Assuntos
Roedores , Remodelação Ventricular , Animais , Humanos , Hipóxia , Infarto , MiocárdioRESUMO
Sleep Apnea Syndrome (SAS) is one of the most common chronic diseases, affecting nearly one billion people worldwide. The repetitive occurrence of abnormal respiratory events generates cyclical desaturation-reoxygenation sequences known as intermittent hypoxia (IH). Among SAS metabolic sequelae, it has been established by experimental and clinical studies that SAS is an independent risk factor for the development and progression of non-alcoholic fatty liver disease (NAFLD). The principal goal of this study was to decrypt the molecular mechanisms at the onset of IH-mediated liver injury. To address this question, we used a unique mouse model of SAS exposed to IH, employed unbiased high-throughput transcriptomics and computed network analysis. This led us to examine hepatic mitochondrial ultrastructure and function using electron microscopy, high-resolution respirometry and flux analysis in isolated mitochondria. Transcriptomics and network analysis revealed that IH reprograms Nuclear Respiratory Factor- (NRF-) dependent gene expression and showed that mitochondria play a central role. We thus demonstrated that IH boosts the oxidative capacity from fatty acids of liver mitochondria. Lastly, the unbalance between oxidative stress and antioxidant defense is tied to an increase in hepatic ROS production and DNA damage during IH. We provide a comprehensive analysis of liver metabolism during IH and reveal the key role of the mitochondria at the origin of development of liver disease. These findings contribute to the understanding of the mechanisms underlying NAFLD development and progression during SAS and provide a rationale for novel therapeutic targets and biomarker discovery.
RESUMO
BACKGROUND: Obstructive sleep apnoea and the related intermittent hypoxia (IH) are widely recognised as risk factors for incident cardiovascular diseases. Numerous studies support the deleterious vascular impact of IH in rodents but an overall interpretation is challenging owing to heterogeneity in rodent species investigated and the severity and duration of IH exposure. To clarify this major issue, we conducted a systematic review and meta-analysis to quantify the impact of IH on systemic artery structure and function depending on the different IH exposure designs. METHODS: We searched PubMed, Embase and Web of Science, and included 125 articles in a meta-analysis, among them 112 using wild-type rodents and 13 using apolipoprotein E knockout (ApoE-/-) mice. We used the standardised mean difference (SMD) to compare results between studies. RESULTS: IH significantly increased mean arterial pressure (+13.90 (95% CI 11.88-15.92)â mmHg), and systolic and diastolic blood pressure. Meta-regressions showed that mean arterial pressure change was associated with strain and year of publication. IH altered vasodilation in males but not in females and increased endothelin-1-induced but not phenylephrine-induced vasoconstriction. Intima-media thickness significantly increased upon IH exposure (SMD 1.10 (95% CI 0.58-1.62); absolute values +5.23 (2.81-7.84)â µm). This increase was observed in mice but not in rats and was negatively associated with age. Finally, IH increased atherosclerotic plaque size in ApoE-/- mice (SMD 1.08 (95% CI 0.80-1.37)). CONCLUSIONS: Our meta-analysis established that IH, independently of other confounders, has a strong effect on vascular structure and physiology. Our findings support the interest of identifying and treating sleep apnoea in routine cardiology practice.
Assuntos
Espessura Intima-Media Carotídea , Roedores , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia , Masculino , Camundongos , RatosRESUMO
BACKGROUND: Haemorheological alterations are reported in obstructive sleep apnoea (OSA) and reversed with continuous positive airway pressure (CPAP), observations potentially explained by intermittent hypoxia (IH)-induced oxidative stress. Our objective was to investigate whether IH causes haemorheological alterations via oxidative stress. METHODS: Wistar rats were exposed to normoxia (n=7) or IH (n=8) for 14â days. 23 moderate-to-severe OSA patients were assessed at three time-points: baseline, after randomisation to either 2â weeks of nocturnal oxygen (n=13) or no treatment (n=10) and after 1â month of CPAP treatment (n=17). Furthermore, an OSA-free control group (n=13) was assessed at baseline and after time-matched follow-up. We measured haemorheological parameters (haematocrit, blood viscosity, plasma viscosity (rats only), erythrocyte aggregation and deformability (humans only)) and redox balance (superoxide dismutase (SOD), glutathione peroxidase, protein oxidation (advanced oxidation protein products (AOPPs)) and lipid peroxidation (malondialdehyde)). We also tested the haemorheological sensitivity of erythrocytes to reactive oxygen species (ROS) in our human participants using the oxidant t-butyl hydroperoxide (TBHP). RESULTS: In rats, IH increased blood viscosity by increasing haematocrit without altering the haemorheological properties of erythrocytes. IH also reduced SOD activity and increased AOPPs. In humans, baseline haemorheological properties were similar between patients and control participants, and properties were unaltered following oxygen and CPAP, except erythrocyte deformability was reduced following oxygen therapy. Redox balance was comparable between patients and control participants. At baseline, TBHP induced a greater reduction of erythrocyte deformability in patients while CPAP reduced TBHP-induced increase in aggregation strength. CONCLUSIONS: IH and OSA per se do not cause haemorheological alterations despite the presence of oxidative stress or higher sensitivity to ROS, respectively.
Assuntos
Apneia Obstrutiva do Sono , Animais , Pressão Positiva Contínua nas Vias Aéreas , Humanos , Hipóxia , Ratos , Ratos Wistar , Reologia , Apneia Obstrutiva do Sono/terapiaRESUMO
BACKGROUND: Intermittent hypoxia (IH) is the major feature of obstructive sleep apnea syndrome, well-known to induce cardiometabolic complications. We previously demonstrated that IH induces hyperinsulinemia and associated altered insulin signaling in adipose tissue, liver, and skeletal muscle, but impact of IH on cardiac insulin signaling and functional/structural consequences remains unknown. Therefore, the aims of this study were to investigate in both lean and obese mice the effects of chronic IH on the following: (1) cardiac insulin signaling and (2) cardiac remodeling and function. METHODS: C57BL/6 J male mice were fed low-fat (LFD) or high-fat (HFD) diet for 20 weeks, and exposed to IH (21-5% FiO2, 60 s cycle, 8 h/day) or normoxia (N) for the last 6 weeks. Systemic insulin sensitivity was evaluated by an insulin tolerance test. Cardiac remodeling and contractile function were assessed by cardiac ultrasonography. Ultimately, hearts were withdrawn for biochemical and histological analysis. RESULTS: In LFD mice, IH-induced hyperinsulinemia and systemic insulin resistance that were associated with increased phosphorylations of cardiac insulin receptor and Akt on Tyr1150 and Ser473 residues, respectively. In addition, IH significantly increased cardiac interstitial fibrosis and cardiac contractility. In the HFD group, IH did not exert any additional effect, nor on insulin/Akt signaling, nor on cardiac remodeling and function. CONCLUSION: Our study suggests that, despite systemic insulin resistance, IH exposure mediates an adaptive cardiac response in lean but not in obese mice. Further studies are needed to investigate which specific mechanisms are involved and to determine the long-term evolution of cardiac responses to IH.
Assuntos
Hipóxia/metabolismo , Resistência à Insulina/fisiologia , Insulina/sangue , Obesidade/complicações , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Hipóxia/fisiopatologia , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Camundongos , Obesidade/metabolismoRESUMO
Repetitive complete or incomplete pharyngeal collapses are leading to chronic intermittent hypoxia (CIH), a hallmark feature of obstructive sleep apnea (OSA) syndrome responsible for many metabolic disorders. In humans, an association between OSA and insulin resistance has been found independently of the degree of obesity. Based on our previous work showing that hypoxia applied to adipocytes led to cellular insulin resistance associated with caveolae flattening, we have investigated the effects of CIH on caveolae structuration in adipose tissue. Original exploratory experiences demonstrate that 6 weeks-exposure of lean mice to CIH is characterized by systemic insulin resistance and translates into adipocyte insulin signaling alterations. Chronic intermittent hypoxia also induces caveolae disassembly in white adipose tissue (WAT) illustrated by reduced plasma membrane caveolae density and enlarged caveolae width, concomitantly to WAT insulin resistance state. We show that CIH downregulates caveolar gene and protein expressions, including cavin-1, cavin-2, and EHD2, underlying molecular mechanisms responsible for such caveolae flattening. Altogether, we provide evidences for adipose tissue caveolae disassembly following CIH exposure, likely linked to cavin protein downregulation. This event may constitute the molecular basis of insulin resistance development in OSA patients.
RESUMO
BACKGROUND Sleep-disordered breathing is associated with a poor prognosis (mortality) in patients with ischemic cardiomyopathy. The understanding of mechanisms linking intermittent hypoxia (IH), the key feature of sleep-disordered breathing, to ischemic cardiomyopathy progression is crucial for identifying specific actionable therapeutic targets. The aims of the present study were (1) to evaluate the impact of IH on the time course evolution of cardiac remodeling and contractile dysfunction in a rat model of ischemic cardiomyopathy; and (2) to determine the impact of IH on sympathetic activity, hypoxia inducible factor-1 activation, and endoplasmic reticulum stress in the time course of ischemic cardiomyopathy progression. METHODS AND RESULTS Ischemic cardiomyopathy was induced by a permanent ligature of the left coronary artery in male Wistar rats (rats with myocardial infarction). Rats with myocardial infarction were then exposed to either IH or normoxia for up to 12 weeks. Cardiac remodeling and function were analyzed by Sirius red and wheat germ agglutinin staining, ultrasonography, and cardiac catheterization. Sympathetic activity was evaluated by spectral analysis of blood pressure variability. Hypoxia-inducible factor-1α activation and burden of endoplasmic reticulum stress were characterized by Western blots. Long-term IH exposure precipitated cardiac remodeling (hypertrophy and interstitial fibrosis) and contractile dysfunction during the time course evolution of ischemic cardiomyopathy in rodents. Among associated mechanisms, we identified the early occurrence and persistence of sympathetic activation, associated with sustained hypoxia-inducible factor-1α expression and a delayed pro-apoptotic endoplasmic reticulum stress. CONCLUSIONS Our data provide the demonstration of the deleterious impact of IH on post-myocardial infarction remodeling and contractile dysfunction. Further studies are needed to evaluate whether targeting sympathetic nervous system or HIF-1 overactivities could limit these effects and improve management of coexisting ischemic cardiomyopathy and sleep-disordered breathing.
Assuntos
Cardiomiopatias/fisiopatologia , Hipóxia/fisiopatologia , Contração Miocárdica/fisiologia , Síndromes da Apneia do Sono/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Pressão Sanguínea/fisiologia , Cardiomiopatias/complicações , Modelos Animais de Doenças , Progressão da Doença , Estresse do Retículo Endoplasmático/fisiologia , Coração , Hipóxia/complicações , Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/patologia , Masculino , Infarto do Miocárdio/patologia , Isquemia Miocárdica/etiologia , Miocárdio/patologia , Ratos , Ratos Wistar , Síndromes da Apneia do Sono/complicações , Fatores de TempoRESUMO
Although severe intermittent hypoxia (IH) is well known to induce deleterious cardiometabolic consequences, moderate IH may induce positive effects in obese individuals. The present study aimed to evaluate the effect of two hypoxic conditioning programs on cardiovascular and metabolic health status of overweight or obese individuals. In this randomized single-blind controlled study, 35 subjects (54 ± 9.3 yr, 31.7 ± 3.5 kg/m2) were randomized into three 8-wk interventions (three 1-h sessions per week): sustained hypoxia (SH), arterial oxygen saturation ([Formula: see text]) = 75%; IH, 5 min [Formula: see text] = 75% - 3 min normoxia; normoxia. Ventilation, heart rate, blood pressure, and tissue oxygenation were measured during the first and last hypoxic conditioning sessions. Vascular function, blood glucose and insulin, lipid profile, nitric oxide metabolites, and oxidative stress were evaluated before and after the interventions. Both SH and IH increased ventilation in hypoxia (+1.8 ± 2.1 and +2.3 ± 3.6 L/min, respectively; P < 0.05) and reduced normoxic diastolic blood pressure (-12 ± 15 and -13 ± 10 mmHg, respectively; P < 0.05), whereas changes in normoxic systolic blood pressure were not significant (+3 ± 9 and -6 ± 13 mmHg, respectively; P > 0.05). IH only reduced heart rate variability (e.g., root-mean-square difference of successive normal R-R intervals in normoxia -21 ± 35%; P < 0.05). Both SH and IH induced no significant change in body mass index, vascular function, blood glucose, insulin and lipid profile, nitric oxide metabolites, or oxidative stress, except for an increase in superoxide dismutase activity following SH. This study indicates that passive hypoxic conditioning in obese individuals induces some positive cardiovascular and respiratory improvements despite no change in anthropometric data and even a reduction in heart rate variability during IH exposure.
Assuntos
Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Sistema Cardiovascular/fisiopatologia , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Adulto , Sistema Cardiovascular/metabolismo , Colesterol/sangue , Feminino , Humanos , Hipóxia/metabolismo , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Sobrepeso/metabolismo , Método Simples-Cego , Triglicerídeos/sangueRESUMO
BACKGROUND: Chronic intermittent hypoxia (IH), the hallmark feature of obstructive sleep apnoea syndrome, contributes to infarct size enhancement after myocardial ischemia-reperfusion (I/R). Curcumin (Curc), the natural pigment of Curcuma longa, has been demonstrated to be beneficial in the context of myocardial injury. In this study, we assessed the effects of Curc on the maladaptive cardiac response to IH, and particularly on IH-induced hypoxia inducible factor-1 (HIF-1) expression, oxidative stress, inflammation, endoplasmic reticulum (ER) stress and apoptosis. METHODS: Swiss/SV129 mice were exposed to normoxia or IH (21-5% FiO2, 60 s cycles, 8 h per day, for 21 days) and treated orally with Curc (100 mg kg-1 day-1, oral gavage) or its vehicle. Mice were then either euthanised for heart sampling in order to perform biochemical and histological analysis, or subjected to an in vivo ischemia-reperfusion protocol in order to measure infarct size. RESULTS: IH increased nuclear HIF-1α expression and superoxide anion (O2 .-) production as well as nuclear factor kappa B (NF-kB) p65, glucose-regulated protein (Grp78) and C/EBP homologous protein (CHOP) expression. IH also induced apoptosis and increased infarct size after I/R . The IH-induced HIF-1 activation, oxidative stress, inflammation, ER stress and apoptosis were abolished by chronic Curc treatment. Curc also significantly decreased infarct size only in mice exposed to IH. CONCLUSION: Curc prevents IH-induced myocardial cell death signalling. Curc might be used as a combined therapy with continuous positive airway pressure in sleep apnoea patients with high cardiovascular risk.
RESUMO
Chronic intermittent hypoxia (CIH) occurring during sleep apnea amplifies infarct size owing to ischemia-reperfusion. CIH activates hypoxia-inducible factor 1 (HIF-1) and activating transcription factor 4 (ATF4). However, whether HIF-1 and ATF4 interact to promote cardiomyocyte death remains unexplored. For the first time, we observed that in myocardium from apneic patients, CCAAT enhancer-binding protein homologous protein (CHOP) expression is increased and HIF-1α expression is correlated with sleep apnea severity. In mice, single-allele deletion of HIF-1α prevents CIH increase in CHOP expression and infarct size. We uncovered a physical interaction between HIF-1α and ATF4 in CIH that may represent a novel cardiomyocyte death complex.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia , Infarto do Miocárdio , Síndromes da Apneia do Sono , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Morte Celular , Humanos , Hipóxia/complicações , Hipóxia/etiologia , Hipóxia/metabolismo , Camundongos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/metabolismoRESUMO
In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A-induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.