Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786658

RESUMO

Fusarium spp. are commonly associated with the root rot complex of soybean (Glycine max). Previous surveys identified six common Fusarium species from Manitoba, including F. oxysporum, F. redolens, F. graminearum, F. solani, F. avenaceum, and F. acuminatum. This study aimed to determine their pathogenicity, assess host resistance, and evaluate the genetic diversity of Fusarium spp. isolated from Canada. The pathogenicity of these species was tested on two soybean cultivars, 'Akras' (moderately resistant) and 'B150Y1' (susceptible), under greenhouse conditions. The aggressiveness of the fungal isolates varied, with root rot severities ranging from 1.5 to 3.3 on a 0-4 scale. Subsequently, the six species were used to screen a panel of 20 Canadian soybean cultivars for resistance in a greenhouse. Cluster and principal component analyses were conducted based on the same traits used in the pathogenicity study. Two cultivars, 'P15T46R2' and 'B150Y1', were consistently found to be tolerant to F. oxysporum, F. redolens, F. graminearum, and F. solani. To investigate the incidence and prevalence of Fusarium spp. in Canada, fungi were isolated from 106 soybean fields surveyed across Manitoba, Saskatchewan, Ontario, and Quebec. Eighty-three Fusarium isolates were evaluated based on morphology and with multiple PCR primers, and phylogenetic analyses indicated their diversity across the major soybean production regions of Canada. Overall, this study contributes valuable insights into host resistance and the pathogenicity and genetic diversity of Fusarium spp. in Canadian soybean fields.

2.
Plant Dis ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381965

RESUMO

Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, is the ability of Cm to infect seeds and plants without causing symptoms what makes it an even more dangerous pathogen. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves, and roots. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.

3.
Mol Plant Pathol ; 25(1): e13406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009407

RESUMO

Effectors encoded by avirulence genes (Avr) interact with the Phytophthora sojae resistance gene (Rps) products to generate incompatible interactions. The virulence profile of P. sojae is rapidly evolving as a result of the large-scale deployment of Rps genes in soybean. For a successful exploitation of Rps genes, it is recommended that soybean growers use cultivars containing the Rps genes corresponding to Avr genes present in P. sojae populations present in their fields. Determination of the virulence profile of P. sojae isolates is critical for the selection of soybean cultivars. High-resolution melting curve (HRM) analysis is a powerful tool, first applied in medicine, for detecting mutations with potential applications in different biological fields. Here, we report the development of an HRM protocol, as an original approach to discriminate effectors, to differentiate P. sojae haplotypes for six Avr genes. An HRM assay was performed on 24 P. sojae isolates with different haplotypes collected from soybean fields across Canada. The results clearly confirmed that the HRM assay discriminated different virulence genotypes. Moreover, the HRM assay was able to differentiate multiple haplotypes representing small allelic variations. HRM-based prediction was validated by phenotyping assays. This HRM assay provides a unique, cost-effective and efficient tool to predict virulence pathotypes associated with six different Avr (1b, 1c, 1d, 1k, 3a and 6) genes from P. sojae, which can be applied in the deployment of appropriate Rps genes in soybean fields.


Assuntos
Phytophthora , Alelos , Haplótipos/genética , Phytophthora/genética , Patologia Molecular , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética
4.
Nat Commun ; 14(1): 6043, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758723

RESUMO

Plant disease resistance genes are widely used in agriculture to reduce disease outbreaks and epidemics and ensure global food security. In soybean, Rps (Resistance to Phytophthora sojae) genes are used to manage Phytophthora sojae, a major oomycete pathogen that causes Phytophthora stem and root rot (PRR) worldwide. This study aims to identify temporal changes in P. sojae pathotype complexity, diversity, and Rps gene efficacy. Pathotype data was collected from 5121 isolates of P. sojae, derived from 29 surveys conducted between 1990 and 2019 across the United States, Argentina, Canada, and China. This systematic review shows a loss of efficacy of specific Rps genes utilized for disease management and a significant increase in the pathotype diversity of isolates over time. This study finds that the most widely deployed Rps genes used to manage PRR globally, Rps1a, Rps1c and Rps1k, are no longer effective for PRR management in the United States, Argentina, and Canada. This systematic review emphasizes the need to widely introduce new sources of resistance to P. sojae, such as Rps3a, Rps6, or Rps11, into commercial cultivars to effectively manage PRR going forward.


Assuntos
Phytophthora , Phytophthora/genética , Genes de Plantas , Agricultura , Argentina , Canadá/epidemiologia
5.
RNA Biol ; 20(1): 614-628, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37599428

RESUMO

The soybean cyst nematode (SCN - Heterodera glycines) is one of the most damaging pests to the cultivated soybean worldwide. Using a wide array of stylet-secreted effector proteins, this nematode can restructure its host cells into a complex and highly active feeding structure called the syncytium. Tight regulation of these proteins is thought to be essential to the successful formation of this syncytium. To date, multiple mechanisms have been proposed to regulate the expression of these proteins including through post-transcriptional regulation. MicroRNAs (miRNAs) are a class of small, roughly 22-nucleotide-long, non-coding RNA shown to regulate gene expression through its interaction with the 3' untranslated region of genes. These same small RNAs have also been hypothesized to be able to cross over kingdom barriers and regulate genes in other species in a process called cross-kingdom interactions. In this study, we characterized the miRNome of the SCN via sequencing of small-RNAs isolated from whole nematodes and exosomes representing all developmental stages. We identified 121 miRNA loci encoding 96 distinct miRNA families including multiple lineage- and species-specific candidates. Using a combination of plant- and animal-specific miRNA target predictors, we generated a unique repertoire of miRNA:mRNA interacting partners in the nematode and its host plant leading to the identification of a set of nine probable cross-kingdom miRNA candidates.


Assuntos
Cistos , MicroRNAs , Nematoides , RNA Longo não Codificante , Pequeno RNA não Traduzido , Animais , MicroRNAs/genética , Glycine max/genética , Regiões 3' não Traduzidas , Nematoides/genética , Glicina
6.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298400

RESUMO

The soybean cyst nematode (Heterodera glycines, SCN), is the most damaging disease of soybean in North America. While management of this pest using resistant soybean is generally still effective, prolonged exposure to cultivars derived from the same source of resistance (PI 88788) has led to the emergence of virulence. Currently, the underlying mechanisms responsible for resistance breakdown remain unknown. In this study, we combined a single nematode transcriptomic profiling approach with long-read sequencing to reannotate the SCN genome. This resulted in the annotation of 1932 novel transcripts and 281 novel gene features. Using a transcript-level quantification approach, we identified eight novel effector candidates overexpressed in PI 88788 virulent nematodes in the late infection stage. Among these were the novel gene Hg-CPZ-1 and a pioneer effector transcript generated through the alternative splicing of the non-effector gene Hetgly21698. While our results demonstrate that alternative splicing in effectors does occur, we found limited evidence of direct involvement in the breakdown of resistance. However, our analysis highlighted a distinct pattern of effector upregulation in response to PI 88788 resistance indicative of a possible adaptation process by SCN to host resistance.


Assuntos
Cistos , Nematoides , Tylenchoidea , Animais , Glycine max/genética , Transcriptoma , Virulência/genética , Nematoides/genética , Tylenchoidea/fisiologia , Doenças das Plantas/genética
7.
BMC Biol ; 21(1): 118, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226185

RESUMO

BACKGROUND: Pseudozyma flocculosa is a highly efficient biocontrol agent (BCA) of powdery mildews whose mode of action remains elusive. It is known to secrete unique effectors during its interaction with powdery mildews but effectors have never been shown to be part of the arsenal of a BCA. Here, we characterize the role of the effector Pf2826 released by Pseudozyma flocculosa during its tripartite interaction with barley and the pathogen fungus Blumeria graminis f. sp. hordei. RESULTS: We utilized CRISPR-Cas9-based genome editing and confirmed that secreted P. flocculosa effector Pf2826 is required for full biocontrol activity. We monitored the localization of the effector Pf2826 with C-terminal mCherry tag and found it localized around the haustoria and on powdery mildew spores. His-tagged Pf2826 recombinant protein was expressed, purified, and used as bait in a pull-down assay from total proteins extracted during the tripartite interaction. Potential interactors were identified by LC-MS/MS analysis after removing unspecific interactions found in the negative controls. A two-way yeast two-hybrid assay validated that Pf2826 interacted with barley pathogenesis-related (PR) proteins HvPR1a and chitinase and with an effector protein from powdery mildew. CONCLUSIONS: In contrast to the usual modes of action of competition, parasitism, and antibiosis ascribed to BCAs, this study shows that effector pf2826 plays a vital role in the biocontrol activity of P. flocculosa by interacting with plant PR proteins and a powdery mildew effector, altering the host-pathogen interaction.


Assuntos
Basidiomycota , Espectrometria de Massas em Tandem , Cromatografia Líquida , Antibiose
8.
Plant Dis ; 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35350887

RESUMO

Marijuana (Cannabis sativa L.) is legal in Canada for medical and recreational purposes and is currently a multi-million-dollar industry. The province of Quebec follows British Columbia and Ontario in production acreage (Government of Canada 2018). During the growing season 2020-2021, five greenhouse growers throughout Quebec reported the presence of signs and symptoms reminiscent of powdery mildew including the presence of white powdery patches on the adaxial sides of leaves of several C. sativa cultivars. From one commercial facility, infected leaves of three cannabis cultivars (Sour Diesel, Orange Krush, and Lemon Sour) were photographed and the fungal mycelium was collected for identification in the laboratory. Fungal mycelium on leaf tissue was white and amphigenous and displayed unbranched hyaline conidiophores ranging from 130 to 275 µm in height (n = 50). Conidiophores arose from the upper surface of hyphal mother cells ranging from 35-70 × 8-13 µm in diameter (n = 25) and formed catenescent conidia. Conidia were broad ellipsoid-ovoid and measured, 24 to 35 × 12 to 19 µm (n = 50), and hyphae ranged from 3-8 µm in diameter (n = 30). Based on previous description (Qiu et al. 2020), the fungus was placed within the Golovinomyces genus. The species identification was confirmed through multi-locus phylogenetic using internal transcribed spacer (ITS), 28S large ribosomal subunit, and chitin synthase I (CHS1) genes amplified as recommended (Qiu et al. 2020), and directly sequenced with amplification primers (Centre Hospitalier de l'Université Laval de Quebec, CA). The three marker sequences shared 100% similarity for all the samples analyzed and were deposited in Genbank under accession numbers: OM131434 (28S), OM131448 (ITS), and OM141118 (CHS1). The phylogenetic analysis of the multi-locus sequences amplified grouped all three Quebec marijuana isolates in the G. ambrosiae accessions, confirming their identification. Pathogenicity was confirmed by transferring conidia onto detached healthy leaves of hop plants (Humulus lupulus) cultivar Northern Brewer kept under greenhouse conditions (28C, 50-60% relative humidity, and 14 h light) via paint brush inoculation. Hop leaves were used as surrogate due to the restricted availability of marijuana leaves. Inoculated leaves were placed in the growth chamber set at 20C, 50-60% relative humidity, and long days conditions as previously suggested (Weldon et al. 2020). The leaves developed powdery mildew colonies after 21 days, and the fungus was confirmed to be G. ambrosiae following morphological characterization and amplification of CHS1. Powdery mildew caused by G. ambrosiae (previous Golovinomyces cichoracearum) has been reported affecting hemp (Cannabis sativa) in New York and Oregon, United Sates (Weldon et al. 2020; Wiseman et al. 2021), and in British Columbia, Canada (Pépin et al. 2018; Punja et al. 2021), and this is the first report of G. ambrosiae causing powdery mildew on marijuana in Quebec. REFERENCES Government of Canada 2018. Online, retrieved January 7, 2021 https://www150.statcan.gc.ca/n1/daily-quotidien/180430/dq180430b-eng.htm Pépin N, Punja ZK, Joly DL. 2018. First report of powdery mildew caused by Golovinomyces cichoracearum sensu lato on Cannabis satia in Canada. Plant Disease. 102(12):2644. Doi: https://doi.org/10.1094/PDIS-04-18-0586-PDN Punja, Z. P. (2021). First report of the powdery mildew pathogen of hops, Podosphaeria macularis, naturally infecting cannabis (Cannabis sativa L., marijuana) plants under field conditions, Canadian Journal of Plant Pathology, Doi: https://doi.org/10.1080/07060661.2021.1960424. Qiu, P.-L., Liu, S.-Y., Bradshaw, M., Rooney-Latham, S., Takamatsu, S., Bulgakov, T. S., Tang, S.-R., Feng, J., Jin, D.-N., Aroge, T., Li, Y., Wang, L.-L., and Braun, U. 2020. Multi-locus phylogeny and taxonomy of an unresolved, heterogeneous species complex within the genus Golovinomyces (Ascomycota, Erysiphales), including G. ambrosiae, G. circumfusus and G. spadiceus. BMC Microbiology. 20:51. Doi : https://doi.org/10.1186/s12866-020-01731-9. Weldon WA, Ullrich MR, Smart LB, Smart CD, Gadoury DM. 2020. Cross-infectivity of powdery mildew isolates originating from hemp (Cannabis sativa) and Japanese hop (Humulus japonicus) in New York. Plant Health Progress. 21(1):47-53. Doi: https://doi.org/10.1094/PHP-09-19-0067-RS Wiseman, M. S., Bates, T. A., Garfinkel, A. R., Ocamb, C. M., and Gent, D. H. 2021. First Report of Powdery Mildew Caused by Golovinomyces ambrosiae on Cannabis sativa in Oregon. Plant Disease 105(9):2733. Doi: https://doi.org/10.1094/PDIS-11-20-2455-PDN.

9.
Mol Plant Pathol ; 23(5): 693-706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150190

RESUMO

The use of resistance genes in elite soybean cultivars is one of the most widely used methods to manage Phytophthora sojae. This method relies on effector-triggered immunity, where a Resistant to P. sojae (Rps) gene product from the plant recognizes a specific effector from the pathogen, encoded by an avirulence (Avr) gene. Many Avr genes from P. sojae have been identified in the last decade, allowing a better exploitation of this type of resistance. The objective of the present study was to identify the Avr gene triggering immunity derived from the soybean resistance gene Rps8. The analysis of a segregating F2 progeny coupled with a genotyping-by-sequencing approach led to the identification of a putative Avr8 locus. The investigation of this locus using whole-genome sequencing data from 31 isolates of P. sojae identified Avr3a as the likely candidate for Avr8. Long-read sequencing also revealed that P. sojae isolates can carry up to five copies of the Avr3a gene, compared to the four previously reported. Haplotype and transcriptional analyses showed that amino acid changes and absence of Avr3a transcripts from P. sojae isolates caused changes in virulence towards Rps8. Functional analyses using CRISPR/Cas9 knockout and constitutive expression demonstrated that Rps8 interacted with Avr3a. We also showed that a specific allele of Avr3a is recognized by Rps3a but not Rps8. While Rps3a and Rps8 have been previously described as closely linked, this is the first report of a clear distinction hitherto undefined between these two resistance genes.


Assuntos
Glycine max , Phytophthora infestans , Alelos , Haplótipos/genética , Phytophthora infestans/genética , Doenças das Plantas , Glycine max/genética , Virulência/genética
10.
Plant Dis ; 106(1): 215-222, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34515508

RESUMO

Cranberry fruit rot (CFR) pathogens are widely reported in the literature, but performing large-scale analysis of their presence inside fruit has always been challenging. In this study, a new molecular diagnostic tool, capable of identifying simultaneously 12 potential fungal species causing CFR, was used to better define the impact of CFR across cranberry fields in Québec. For this purpose, 126 fields and 7,825 fruits were sampled in three cranberry farms distributed throughout the province and subjected to comparative analyses of fungal presence and abundance according to cultural practices, sampling times, and cranberry cultivars. All 12 pathogens were detected throughout the study, but as a first major finding, the analyses revealed that four species, Godronia cassandrae, Colletotrichum fructivorum, Allantophomopsis cytisporea, and Coleophoma empetri, were consistently predominant regardless of the parameters studied. Comparison of conventional and organic productions showed a significant reduction in fungal richness and relative abundance. Interestingly, Monilinia oxycocci was found almost exclusively in organic productions, indicating that fungicides had a strong and persistent effect on its population. Surprisingly, there were no significant differences in fungal relative abundance or species richness between fruit sampled at harvest or in storage, suggesting that there may not exist a clear distinction between field and storage rot, as was previously thought. Comparative analysis of fungal species found on eight different cranberry cultivars indicated that they were all infected by the same fungi but could not rule out differences in genetic resistance. This large-scale analysis allows us to draw an exhaustive picture of CFR in Québec and provides new information with respect to its management.


Assuntos
Vaccinium macrocarpon , Fazendas , Frutas , Extratos Vegetais , Quebeque
11.
J Fungi (Basel) ; 9(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36675833

RESUMO

Phytophthora sojae, the agent responsible for stem and root rot, is one of the most damaging plant pathogens of soybean. To establish a compatible-interaction, P. sojae secretes a wide array of effector proteins into the host cell. These effectors have been shown to act either in the apoplastic area or the cytoplasm of the cell to manipulate the host cellular processes in favor of the development of the pathogen. Deciphering effector-plant interactions is important for understanding the role of P. sojae effectors in disease progression and developing approaches to prevent infection. Here, we review the subcellular localization, the host proteins, and the processes associated with P. sojae effectors. We also discuss the emerging topic of effectors in the context of effector-resistance genes interaction, as well as model systems and recent developments in resources and techniques that may provide a better understanding of the soybean-P. sojae interaction.

12.
Plant Soil ; 466(1-2): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720209

RESUMO

BACKGROUND: Silicon (Si) is widely considered a non-essential but beneficial element for higher plants, providing broad protection against various environmental stresses (both biotic and abiotic), particularly in species that can readily absorb the element. Two plasma-membrane proteins are known to coordinate the radial transport of Si (in the form of Si(OH)4) from soil to xylem within roots: the influx channel Lsi1 and the efflux transporter Lsi2. From a structural and mechanistic perspective, much more is known about Lsi1 (a member of the NIP-III subgroup of the Major Intrinsic Proteins) compared to Lsi2 (a putative Si(OH)4/H+ antiporter, with some homology to bacterial anion transporters). SCOPE: Here, we critically review the current state of understanding regarding the physiological role and molecular characteristics of Lsi2. We demonstrate that the structure-function relationship of Lsi2 is largely uncharted and that the standing transport model requires much better supportive evidence. We also provide (to our knowledge) the most current and extensive phylogenetic analysis of Lsi2 from all fully sequenced higher-plant genomes. We end by suggesting research directions and hypotheses to elucidate the properties of Lsi2. CONCLUSIONS: Given that Lsi2 is proposed to mediate xylem Si loading and thus root-to-shoot translocation and biosilicification, it is imperative that the field of Si transport focus its efforts on a better understanding of this important topic. With this review, we aim to stimulate and advance research in the field of Si transport and thus better exploit Si to improve crop resilience and agricultural output. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-021-05061-1.

13.
Plant Dis ; 105(12): 4006-4013, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34161124

RESUMO

The large-scale deployment of resistance to Phytophthora sojae (Rps) genes in soybean has led to the rapid evolution of the virulence profile (pathotype) of P. sojae populations. Determining the pathotypes of P. sojae isolates is important in selecting soybean germplasm carrying the proper Rps, but this process is fastidious and requires specific expertise. In this work, we used a molecular assay to assess the pathotypes of P. sojae isolates obtained throughout the provinces of Québec, Ontario, and Manitoba. In preliminary assays, the molecular tool showed equivalent prediction of the pathotypes as a phenotyping assay and proved to be much faster to apply while eliminating intermediate values. Upon analysis of nearly 300 isolates, 24 different pathotypes were detected in Québec and Ontario, compared with only eight in Manitoba, where soybean culture is more recent. Pathotypes 1a, 1c, and 1d was predominant in Québec, while 1a, 1b, 1c, 1d, and 1k pathotypes were the most common in Manitoba. Overall, the results showed that 98 and 86% of the isolates carried pathotype 1a or 1c, respectively, suggesting that Rps1a and Rps1c were no longer effective in Canada. Based on the history of soybean varieties used in surveyed fields, it was found that 84% of them contained Rps genes that were no longer resistant against the pathotypes of the isolates found in the fields. While highlighting an easier and more precise option to assess pathotypes, this study presents the first pan-Canadian survey of P. sojae and stresses the importance of carefully managing the declining sources of resistance.


Assuntos
Phytophthora , Resistência à Doença/genética , Ontário , Phytophthora/genética , Doenças das Plantas , Glycine max
14.
Fungal Genet Biol ; 153: 103573, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029708

RESUMO

Pseudozyma flocculosa is an epiphytic yeast with powerful antagonistic activity against powdery mildews. This activity has been associated with the production of a rare antifungal glycolipid, flocculosin. In spite of the discovery of a specific gene cluster for flocculosin synthesis, attempts to ascribe a functional role to the molecule have been hampered by the inability to efficiently transform P. flocculosa. In this study, two different approaches, target gene replacement by homologous recombination (HR) and CRISPR-Cas9 based genome-editing, were utilized to decipher the role of flocculosin in the biocontrol activity of P.flocculosa. It was possible to alter the production of flocculosin through edition of fat1 by HR, but such mutants displayed abnormal phenotypes and the inability to produce sporidia. Sequencing analyses revealed that transformation by HR led to multiple insertions in the genome explaining the pleiotrophic effects of the approach. On the other hand, CRISPR-Cas9 transformation yielded one mutant that was altered specifically in the proper synthesis of flocculosin. Notwithstanding the loss of flocculosin production, such mutant was phenotypically similar to the wild-type, and when tested for its biocontrol activity against powdery mildew, displayed the same efficacy. These results offer strong evidence that flocculosin-mediated antibiosis is not responsible for the mode of action of P. flocculosa and highlight the potential of CRISPR-Cas9 for functional studies of otherwise difficult-to-transform fungi such as P. flocculosa.


Assuntos
Antibiose , Ascomicetos/fisiologia , Basidiomycota/fisiologia , Celobiose/análogos & derivados , Glicolipídeos/metabolismo , Basidiomycota/genética , Sistemas CRISPR-Cas , Celobiose/biossíntese , Celobiose/genética , Celobiose/metabolismo , Edição de Genes , Glicolipídeos/biossíntese , Glicolipídeos/genética , Recombinação Homóloga , Hordeum/microbiologia , Doenças das Plantas/microbiologia
15.
Phytopathology ; 111(1): 137-148, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33100145

RESUMO

Soybean cyst nematode (SCN) is one of the most important diseases in soybean. Currently, the main management strategy relies on planting resistant cultivars. However, the overuse of a single resistance source has led to the selection of virulent SCN populations, although the mechanisms by which the nematode overcomes the resistance genes remain unknown. In this study, we used a nematode-adapted single-cell RNA-seq approach to identify SCN genes potentially involved in resistance breakdown in Peking and PI 88788 parental soybean lines. We established for the first time the full transcriptome of single SCN individuals allowing us to identify a list of putative virulence genes against both major SCN resistance sources. Our analysis identified 48 differentially expressed putative effectors (secreted proteins required for infection) alongside 40 effectors showing evidence of novel structural variants, and 11 effector genes containing phenotype-specific sequence polymorphisms. Additionally, a differential expression analysis revealed an interesting phenomenon of coexpressed gene regions with some containing putative effectors. The selection of virulent SCN individuals on Peking resulted in a profoundly altered transcriptome, especially for genes known to be involved in parasitism. Several sequence polymorphisms were also specific to these virulent nematodes and could potentially play a role in the acquisition of nematode virulence. On the other hand, the transcriptome of virulent individuals on PI 88788 was very similar to avirulent ones with the exception of a few genes, which suggest a distinct virulence strategy to Peking.


Assuntos
Cistos , Tylenchoidea , Animais , Genômica , Doenças das Plantas , Glycine max , Tylenchoidea/genética , Virulência
16.
Plant Dis ; 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931389

RESUMO

The complex etiology of cranberry fruit rot (CFR) (Oudemans et al., 1998) has made it difficult to precisely identify the fungi involved in CFR and their relative importance in North America. To remedy this situation, a multiplex PCR approach targeting the 12 most commonly reported fungi in CFR was recently developed (Conti et al., 2019). However, in surveys conducted in Eastern Canada, the molecular tool revealed the presence of an unknown fungus in more than 30% of the collected samples. Analyses were thus undertaken to identify this species. From 117 rotten fruit collected at harvest in 2017, 34 samples of the unknown fungus, all morphologically similar, were isolated but not detected using the molecular tool. Their ITS ribosomal regions were sequenced using universal primers (Vilgalys and Hester, 1990; White et al., 1990) and searched against the GenBank database using the Blastn tool (Altschul et al., 1990). The top match was obtained with Godronia cassandrae (accession number: MH855281 (Vu et al., 2019), 98-100% of identity and an E-value of 0.0), even though some isolates had minor nucleotide differences, as presented in the tree. Sequences were deposited in GenBank as accession numbers MT599989 to MT600022. Since G. cassandrae had been reported, albeit rarely, on cranberry in Michigan (Olatinwo et al., 2003), it was supposed to amplify with the molecular tool developed from the strain DAOM C216021 (AAFC, Ottawa, ON) identified in 1993 on Vaccinium angustifolium as G. cassandrae. Analysis of the sequences used to build the specific primers from this strain confirmed the DAOM strain as being Neocucurbitaria juglandicola, which was never diagnosed in our cranberry samples. To confirm this revised diagnosis, a multi-sequence alignment (MSA) was performed on the ITS regions of the isolates from rotten cranberries and sequences available for the genus Godronia in the NCBI nucleotide database (NCBI txid269064). This MSA allowed us to find discriminant regions between Godronia spp. A pair of PCR primers specific to G. cassandrae found on cranberry fruit was then designed (the forward and reverse sequences are AAT CAG TGG CGG TGC CTG TC and TAC CGC TTC ACT CGC CGT TAC, respectively), generating 196 bp amplicons, with an annealing temperature of 65°C. The diagnosis of 7,835 fruit sampled at three time points (harvest, after three and after six weeks of storage) in 2018, from four cranberry farms located in Québec (CA) and Nova Scotia (CA), detected G. cassandrae in 2350 samples (30%). To assess the pathogenicity of four specimens from 2017, Koch's postulates were completed on two healthy fruit per isolate. The fruit were wounded with a sterilized pick and individually inoculated; two fruit were used as control. Based on our observations, the fungi isolated from cranberry fruit displayed a pale lemon yellow mycelium and black pycnidia. Conidia are hyaline, cylindrical and divided by a single septum. These morphological characters are similar to the ones described in the literature for G. cassandrae (Polashock et al., 2017). Rot symptoms appear as a discoloration from the firm, red and healthy cranberry fruit to a yellowish-orange softer fruit. Molecular characterization of the re-isolated fungus confirmed the presence of G. cassandrae. We report Godronia cassandrae for the first time as a major cause of CFR in Eastern Canada. Its prevalence in cranberry fields of Québec and Nova Scotia suggests that it supplants Physalospora as the main fungus involved in CFR in Eastern Canada.

17.
J Exp Bot ; 71(21): 6775-6788, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32710120

RESUMO

Understanding the evolution events defining silicon (Si) uptake in plant species is important for the efficient exploration of Si-derived benefits. In the present study, Si accumulation was studied in 456 diverse plant species grown in uniform field conditions, and in a subset of 151 species grown under greenhouse conditions, allowing efficient comparison among the species. In addition, a systematic analysis of nodulin 26-like intrinsic proteins III (NIP-III), which form Si channels, was performed in >1000 species to trace their evolutionary path and link with Si accumulation. Significant variations in Si accumulation were observed among the plant species studied. For their part, species lacking NIP-IIIs systematically showed low Si accumulation. Interestingly, seven NIP-IIIs were identified in three moss species, namely Physcomitrella patens, Andreaea rupestris, and Scouleria aquatica, indicating that the evolution of NIP-IIIs dates back as early as 515 million years ago. These results were further supported from previous reports of Si deposition in moss fossils estimated to be from around the Ordovician era. The taxonomical distribution provided in the present study will be helpful for several other disciplines, such as palaeoecology and geology, that define the biogeochemical cycling of Si. In addition to the prediction of Si uptake potential of plant species based on sequence information and taxonomical positioning, the evolutionary path of the Si uptake mechanism described here will be helpful to understand the Si environment over the different eras of land plant evolution.


Assuntos
Aquaporinas , Briófitas , Bryopsida , Briófitas/metabolismo , Bryopsida/metabolismo , Silício/metabolismo
18.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32584998

RESUMO

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Assuntos
Aquaporinas , Vitis , Aquaporinas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Vitis/genética , Vitis/metabolismo
19.
RNA Biol ; 17(9): 1252-1260, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449459

RESUMO

Group I catalytic introns are widespread in bacterial, archaeal, viral, organellar, and some eukaryotic genomes, where they are reported to provide regulatory functions. The group I introns are currently divided into five types (A-E), which are themselves distributed into several subtypes, with the exception of group I type D intron (GI-D). GI-D introns belong to the rarest group with only 17 described to date, including only one with a putative role reported in fungi, where it would interfere with an adaptive response in the cytochrome b (COB) gene to quinone outside inhibitor (QoI) fungicide resistance. Using homology search methods taking into account both conserved sequences and RNA secondary structures, we analysed the mitochondrial genomes or COB genes of 169 fungal species, including some frequently under QoI selection pressure. These analyses have led to the identification of 216 novel GI-D introns, and the definition of three distinct subtypes, one of which being linked with a functional activity. We have further uncovered a homing site for this GI-D intron type, which helps refine the accepted model of quinone outside inhibitor resistance, whereby mobility of the intron across fungal mitochondrial genomes, would influence a fungus ability to develop resistance to QoIs.


Assuntos
Adaptação Biológica , Fungos/fisiologia , Genoma Mitocondrial , Íntrons , Mitocôndrias/genética , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Evolução Molecular , Fungos/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Genes Mitocondriais , Genômica/métodos
20.
J Exp Bot ; 71(21): 6844-6855, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32090252

RESUMO

In plant-pathogen interactions, expression and localization of effectors in the aqueous apoplastic region play a crucial role in the establishment or suppression of pathogen development. Silicon (Si) has been shown to protect plants in several host-pathogen interactions, but its mode of action remains a source of debate. Its deposition in the apoplastic area of plant cells suggests that it might interfere with receptor-effector recognition. In this study, soybean plants treated or not with Si were inoculated with Phytophthora sojae and differences in the ensuing infection process were assessed through different microscopy techniques, transcript analysis of effector and defense genes, and effector (Avr6) localization through immunolocalization and fluorescence labeling. In plants grown without Si, the results showed the rapid (4 d post-inoculation) host recognition by P. sojae through the development of haustorium-like bodies, followed by expression and release of effectors into the apoplastic region. In contrast, Si treatment resulted in limited pathogen development, and significantly lower expression and presence of Avr6 in the apoplastic region. Based on immunolocalization and quantification of Avr6 through fluorescence labeling, our results suggest that the presence of Si in the apoplast interferes with host recognition and/or limits receptor-effector interactions, which leads to an incompatible interaction.


Assuntos
Phytophthora , Doenças das Plantas , Proteínas de Plantas/genética , Silício , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA