Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1118329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846801

RESUMO

Escherichia coli CspA is an RNA binding protein that accumulates during cold-shock and stimulates translation of several mRNAs-including its own. Translation in the cold of cspA mRNA involves a cis-acting thermosensor element, which enhances ribosome binding, and the trans-acting action of CspA. Using reconstituted translation systems and probing experiments we show that, at low temperature, CspA specifically promotes the translation of the cspA mRNA folded in the conformation less accessible to the ribosome, which is formed at 37°C but is retained upon cold shock. CspA interacts with its mRNA without inducing large structural rearrangements, but allowing the progression of the ribosomes during the transition from translation initiation to translation elongation. A similar structure-dependent mechanism may be responsible for the CspA-dependent translation stimulation observed with other probed mRNAs, for which the transition to the elongation phase is progressively facilitated during cold acclimation with the accumulation of CspA.

2.
RNA ; 27(9): 981-990, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34117118

RESUMO

Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas/efeitos dos fármacos , Transporte Biológico , Cinamatos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Canamicina/farmacologia , Cinética , Neomicina/farmacologia , Paromomicina/farmacologia , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/química , RNA de Transferência/genética , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Espectinomicina/farmacologia , Estreptomicina/farmacologia , Viomicina/farmacologia
3.
Nucleic Acids Res ; 48(3): 1056-1067, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31511883

RESUMO

During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, -1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.


Assuntos
Biossíntese de Proteínas , Códon de Terminação , Mudança da Fase de Leitura do Gene Ribossômico , Ribossomos/metabolismo
4.
Biol Chem ; 401(1): 131-142, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31600135

RESUMO

Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.


Assuntos
Guanosina Trifosfato/biossíntese , Fator G para Elongação de Peptídeos/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/genética , Hidrólise , Fator G para Elongação de Peptídeos/biossíntese , RNA Mensageiro/genética , RNA de Transferência/genética
5.
Sci Adv ; 5(12): eaax8030, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31903418

RESUMO

During translation, the ribosome moves along the mRNA one codon at a time with the help of elongation factor G (EF-G). Spontaneous changes in the translational reading frame are extremely rare, yet how the precise triplet-wise step is maintained is not clear. Here, we show that the ribosome is prone to spontaneous frameshifting on mRNA slippery sequences, whereas EF-G restricts frameshifting. EF-G helps to maintain the mRNA reading frame by guiding the A-site transfer RNA during translocation due to specific interactions with the tip of EF-G domain 4. Furthermore, EF-G accelerates ribosome rearrangements that restore the ribosome's control over the codon-anticodon interaction at the end of the movement. Our data explain how the mRNA reading frame is maintained during translation.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Proteínas Mutantes/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/genética , Fases de Leitura , Anticódon/metabolismo , Sequência de Bases , Códon/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Cinética , Domínios Proteicos , RNA de Transferência/metabolismo , Ribossomos/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(17): 4411-4416, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632209

RESUMO

During translation, consecutive ribosomes load on an mRNA and form a polysome. The first ribosome binds to a single-stranded mRNA region and moves toward the start codon, unwinding potential mRNA structures on the way. In contrast, the following ribosomes can dock at the start codon only when the first ribosome has vacated the initiation site. Here we show that loading of the second ribosome on a natural 38-nt-long 5' untranslated region of lpp mRNA, which codes for the outer membrane lipoprotein from Escherichia coli, takes place before the leading ribosome has moved away from the start codon. The rapid formation of this standby complex depends on the presence of ribosomal proteins S1/S2 in the leading ribosome. The early recruitment of the second ribosome to the standby site before translation by the leading ribosome and the tight coupling between translation elongation by the first ribosome and the accommodation of the second ribosome can contribute to high translational efficiency of the lpp mRNA.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Lipoproteínas/biossíntese , Iniciação Traducional da Cadeia Peptídica/fisiologia , Polirribossomos/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/genética , Polirribossomos/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
7.
Cell Rep ; 20(13): 3113-3122, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954228

RESUMO

Canonical translation initiation in bacteria entails the assembly of the 30S initiation complex (IC), which binds the 50S subunit to form a 70S IC. IF3, a key initiation factor, is recruited to the 30S subunit at an early stage and is displaced from its primary binding site upon subunit joining. We employed four different FRET pairs to monitor IF3 relocation after 50S joining. IF3 moves away from the 30S subunit, IF1 and IF2, but can remain bound to the mature 70S IC. The secondary binding site is located on the 50S subunit in the vicinity of ribosomal protein L33. The interaction between IF3 and the 50S subunit is largely electrostatic with very high rates of IF3 binding and dissociation. The existence of the non-canonical binding site may help explain how IF3 participates in alternative initiation modes performed directly by the 70S ribosomes, such as initiation on leaderless mRNAs or re-initiation.


Assuntos
Bactérias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo
8.
Sci Rep ; 7(1): 10536, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874811

RESUMO

The translocation step of protein synthesis entails binding and dissociation of elongation factor G (EF-G), movements of the two tRNA molecules, and motions of the ribosomal subunits. The translocation step is targeted by many antibiotics. Fusidic acid (FA), an antibiotic that blocks EF-G on the ribosome, may also interfere with some of the ribosome rearrangements, but the exact timing of inhibition remains unclear. To follow in real-time the dynamics of the ribosome-tRNA-EF-G complex, we have developed a fluorescence toolbox which allows us to monitor the key molecular motions during translocation. Here we employed six different fluorescence observables to investigate how FA affects translocation kinetics. We found that FA binds to an early translocation intermediate, but its kinetic effect on tRNA movement is small. FA does not affect the synchronous forward (counterclockwise) movements of the head and body domains of the small ribosomal subunit, but exerts a strong effect on the rates of late translocation events, i.e. backward (clockwise) swiveling of the head domain and the transit of deacylated tRNA through the E' site, in addition to blocking EF-G dissociation. The use of ensemble kinetics and numerical integration unraveled how the antibiotic targets molecular motions within the ribosome-EF-G complex.


Assuntos
Antibacterianos/farmacologia , Ácido Fusídico/farmacologia , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Simulação de Dinâmica Molecular , Fator G para Elongação de Peptídeos/química , RNA de Transferência/metabolismo , Ribossomos/química
9.
RNA Biol ; 13(12): 1197-1203, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27801619

RESUMO

In each round of translation elongation, tRNAs and mRNA move within the ribosome by one codon at a time. tRNA-mRNA translocation is promoted by elongation factor G (EF-G) at the cost of GTP hydrolysis. The key questions for understanding translocation are how and when the tRNAs move and how EF-G coordinates motions of the ribosomal subunits with tRNA movement. Here we present 2 recent papers which describe the choreography of movements over the whole trajectory of translocation. We present the view that EF-G accelerates translocation by promoting the steps that lead to GTPase-dependent ribosome unlocking. EF-G facilitates the formation of the rotated state of the ribosome and uncouples the backward motions of the ribosomal subunits, forming an open conformation in which the tRNAs can rapidly move. Ribosome dynamics are important not only in translocation, but also in recoding events, such as frameshifting and bypassing, and mediate sensitivity to antibiotics.


Assuntos
Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Guanosina Trifosfato/química , Hidrólise , Modelos Moleculares , Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mensageiro/química , RNA de Transferência/química , Ribossomos/química
10.
Cell Rep ; 16(8): 2187-2196, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524615

RESUMO

Ribosome dynamics play an important role in translation. The rotation of the ribosomal subunits relative to one another is essential for tRNA-mRNA translocation. An important unresolved question is whether subunit rotation limits the rate of translocation. Here, we monitor subunit rotation relative to peptide bond formation and translocation using ensemble kinetics and single-molecule FRET. We observe that spontaneous forward subunit rotation occurs at a rate of 40 s(-1), independent of the rate of preceding peptide bond formation. Elongation factor G (EF-G) accelerates forward subunit rotation to 200 s(-1). tRNA-mRNA movement is much slower (10-40 s(-1)), suggesting that forward subunit rotation does not limit the rate of translocation. The transition back to the non-rotated state of the ribosome kinetically coincides with tRNA-mRNA movement. Thus, large-scale movements of the ribosome are intrinsically rapid and gated by its ligands such as EF-G and tRNA.


Assuntos
Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Mensageiro/química , RNA de Transferência/química , Subunidades Ribossômicas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas/metabolismo , Rotação
11.
Nat Struct Mol Biol ; 23(4): 342-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26999556

RESUMO

During translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction. Backward swiveling of the SSU head starts upon tRNA translocation and continues until the post-translocation state is reached. This work places structures of translocation intermediates along a time axis and unravels principles of the motions of macromolecular machines.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Guanosina Trifosfato/metabolismo , Hidrólise , Simulação de Dinâmica Molecular , Fator G para Elongação de Peptídeos/química , RNA Bacteriano/química , RNA Mensageiro/química , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química
12.
Nucleic Acids Res ; 43(22): 10700-12, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26338773

RESUMO

The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.


Assuntos
Bactérias/genética , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Fator de Iniciação 1 em Procariotos/metabolismo , Fator de Iniciação 3 em Procariotos/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
13.
Cell ; 157(7): 1619-31, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949973

RESUMO

Programmed -1 ribosomal frameshifting (-1PRF) is an mRNA recoding event utilized by cells to enhance the information content of the genome and to regulate gene expression. The mechanism of -1PRF and its timing during translation elongation are unclear. Here, we identified the steps that govern -1PRF by following the stepwise movement of the ribosome through the frameshifting site of a model mRNA derived from the IBV 1a/1b gene in a reconstituted in vitro translation system from Escherichia coli. Frameshifting occurs at a late stage of translocation when the two tRNAs are bound to adjacent slippery sequence codons of the mRNA. The downstream pseudoknot in the mRNA impairs the closing movement of the 30S subunit head, the dissociation of EF-G, and the release of tRNA from the ribosome. The slippage of the ribosome into the -1 frame accelerates the completion of translocation, thereby further favoring translation in the new reading frame.


Assuntos
Escherichia coli/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Regulação da Expressão Gênica , Biossíntese de Proteínas , Sequência de Bases , Escherichia coli/genética , Vírus da Bronquite Infecciosa/genética , Cinética , Dados de Sequência Molecular , Fator G para Elongação de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Fases de Leitura , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/metabolismo
14.
Translation (Austin) ; 1(1): e24315, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26824016

RESUMO

Elongation factor G (EF-G) is a GTPase that catalyzes tRNA and mRNA translocation during the elongation cycle of protein synthesis. The GTP-bound state of the factor on the ribosome has been studied mainly with non-hydrolyzable analogs of GTP, which led to controversial conclusions about the role of GTP hydrolysis in translocation. Here we describe a mutant of EF-G in which the catalytic His91 is replaced with Ala. The mutant EF-G does not hydrolyze GTP, but binds GTP with unchanged affinity, allowing us to study the function of the authentic GTP-bound form of EF-G in translocation. Utilizing fluorescent reporter groups attached to the tRNAs, mRNA, and the ribosome we compile the velocity map of translocation seen from different perspectives. The data suggest that GTP hydrolysis accelerates translocation up to 30-fold and facilitates conformational rearrangements of both 30S subunit (presumably the backward rotation of the 30S head) and EF-G that lead to the dissociation of the factor. Thus, EF-G combines the energy regime characteristic for motor proteins, accelerating movement by a conformational change induced by GTP hydrolysis, with that of a switch GTPase, which upon Pi release switches the conformations of EF-G and the ribosome to low affinity, allowing the dissociation of the factor.

15.
J Biol Chem ; 287(14): 10922-32, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22308033

RESUMO

Bacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process. However, these structural signals are unlikely forwarded from IF2-G2 to the C-terminal fMet-tRNA binding domain (IF2-C2) because the connected IF2-C1 and IF2-C2 modules show completely independent mobility, indicating that the bacterial interdomain connector lacks the rigidity that was found in the archaeal IF2 homolog aIF5B.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Geobacillus stearothermophilus , Fator de Iniciação 2 em Procariotos/química , Fator de Iniciação 2 em Procariotos/metabolismo , Sequência de Aminoácidos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
16.
RNA ; 16(12): 2319-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20962038

RESUMO

All organisms incorporate post-transcriptional modifications into ribosomal RNA, influencing ribosome assembly and function in ways that are poorly understood. The most highly conserved modification is the dimethylation of two adenosines near the 3' end of the small subunit rRNA. Lack of these methylations due to deficiency in the KsgA methyltransferase stimulates translational errors during both the initiation and elongation phases of protein synthesis and confers resistance to the antibiotic kasugamycin. Here, we present the X-ray crystal structure of the Thermus thermophilus 30S ribosomal subunit lacking these dimethylations. Our data indicate that the KsgA-directed methylations facilitate structural rearrangements in order to establish a functionally optimum subunit conformation during the final stages of ribosome assembly.


Assuntos
Metiltransferases/metabolismo , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Ribossomos/fisiologia , Sequência de Bases , Cristalografia por Raios X , Metilação , Metiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/fisiologia , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/fisiologia , Ribossomos/química , Ribossomos/metabolismo , Relação Estrutura-Atividade , Thermus thermophilus/química , Thermus thermophilus/metabolismo , Thermus thermophilus/fisiologia
17.
RNA ; 15(9): 1693-704, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19622680

RESUMO

The RsmG methyltransferase is responsible for N(7) methylation of G527 of 16S rRNA in bacteria. Here, we report the identification of the Thermus thermophilus rsmG gene, the isolation of rsmG mutants, and the solution of RsmG X-ray crystal structures at up to 1.5 A resolution. Like their counterparts in other species, T. thermophilus rsmG mutants are weakly resistant to the aminoglycoside antibiotic streptomycin. Growth competition experiments indicate a physiological cost to loss of RsmG activity, consistent with the conservation of the modification site in the decoding region of the ribosome. In contrast to Escherichia coli RsmG, which has been reported to recognize only intact 30S subunits, T. thermophilus RsmG shows no in vitro methylation activity against native 30S subunits, only low activity with 30S subunits at low magnesium concentration, and maximum activity with deproteinized 16S rRNA. Cofactor-bound crystal structures of RsmG reveal a positively charged surface area remote from the active site that binds an adenosine monophosphate molecule. We conclude that an early assembly intermediate is the most likely candidate for the biological substrate of RsmG.


Assuntos
RNA Ribossômico 16S/metabolismo , Thermus thermophilus/enzimologia , tRNA Metiltransferases/química , tRNA Metiltransferases/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Farmacorresistência Bacteriana/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Conformação de Ácido Nucleico , Organismos Geneticamente Modificados , Fenótipo , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Homologia de Sequência de Aminoácidos , Estreptomicina/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/isolamento & purificação , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
18.
J Mol Biol ; 388(2): 271-82, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19285505

RESUMO

Posttranscriptional modification of ribosomal RNA (rRNA) occurs in all kingdoms of life. The S-adenosyl-L-methionine-dependent methyltransferase KsgA introduces the most highly conserved rRNA modification, the dimethylation of A1518 and A1519 of 16S rRNA. Loss of this dimethylation confers resistance to the antibiotic kasugamycin. Here, we report biochemical studies and high-resolution crystal structures of KsgA from Thermus thermophilus. Methylation of 30S ribosomal subunits by T. thermophilus KsgA is more efficient at low concentrations of magnesium ions, suggesting that partially unfolded RNA is the preferred substrate. The overall structure is similar to that of other methyltransferases but contains an additional alpha-helix in a novel N-terminal extension. Comparison of the apoenzyme with complex structures with 5'-methylthioadenosine or adenosine bound in the cofactor-binding site reveals novel features when compared with related enzymes. Several mobile loop regions that restrict access to the cofactor-binding site are observed. In addition, the orientation of residues in the substrate-binding site indicates that conformational changes are required for binding two adjacent residues of the substrate rRNA.


Assuntos
Desoxiadenosinas/metabolismo , Metiltransferases/metabolismo , Thermus thermophilus/enzimologia , Tionucleosídeos/metabolismo , Adenosina/química , Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Desoxiadenosinas/química , Metiltransferases/química , Ligação Proteica , Conformação Proteica , Tionucleosídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA