Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 394: 110991, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582340

RESUMO

Exogenous exposures to the triose sugar dihydroxyacetone (DHA) occur from sunless tanning products and electronic cigarette aerosol. Once inhaled or absorbed, DHA enters cells, is converted to dihydroxyacetone phosphate (DHAP), and incorporated into several metabolic pathways. Cytotoxic effects of DHA vary across the cell types depending on the metabolic needs of the cells, and differences in the generation of reactive oxygen species (ROS), cell cycle arrest, and mitochondrial dysfunction have been reported. We have shown that cytotoxic doses of DHA induced metabolic imbalances in glycolysis and oxidative phosphorylation in liver and kidney cell models. Here, we examine the dose-dependent effects of DHA on the rat cardiomyocyte cell line, H9c2. Cells begin to experience cytotoxic effects at low millimolar doses, but an increase in cell survival was observed at 2 mM DHA. We confirmed that 2 mM DHA increased cell survival compared to the low cytotoxic 1 mM dose and investigated the metabolic differences between these two low DHA doses. Exposure to 1 mM DHA showed changes in the cell's fuel utilization, mitochondrial reactive oxygen species (ROS), and transient changes in the glycolysis and mitochondrial energetics, which normalized 24 h after exposure. The 2 mM dose induced robust changes in mitochondrial flux through acetyl CoA and elevated expression of fatty acid synthase. Distinct from the 1 mM dose, the 2 mM exposure increased mitochondrial ROS and NAD(P)H levels, and sustained changes in LDHA/LDHB and acetyl CoA-associated enzymes were observed. Although the cells were exposed to low cytotoxic (1 mM) and non-cytotoxic (2 mM) acute doses of DHA, significant changes in mitochondrial metabolic pathways occurred. Further, the proliferation increase at the acute 2 mM DHA dose suggests a metabolic adaption occurred with sustained consequences in survival and proliferation. With increased exogenous exposure to DHA through e-cigarette aerosol, this work suggests cell metabolic changes induced by acute or potentially chronic exposures could impact cell function and survival.


Assuntos
Sobrevivência Celular , Di-Hidroxiacetona , Glicólise , Mitocôndrias , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Animais , Ratos , Di-Hidroxiacetona/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , Glicólise/efeitos dos fármacos , Reprogramação Metabólica
2.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630705

RESUMO

We report the synthesis of vitamin B1, B2, and B3 derived nucleotides and dinucleotides generated either through mechanochemical or solution phase chemistry. Under the explored conditions, adenosine and thiamine proved to be particularly amenable to milling conditions. Following optimization of the chemistry related to the formation pyrophosphate bonds, mixed dinucleotides of adenine and thiamine (vitamin B1), riboflavin (vitamin B2), nicotinamide riboside and 3-carboxamide 4-pyridone riboside (both vitamin B3 derivatives) were generated in good yields. Furthermore, we report an efficient synthesis of the MW+4 isotopologue of NAD+ for which deuterium incorporation is present on either side of the dinucleotidic linkage, poised for isotopic tracing experiments by mass spectrometry. Many of these mixed species are novel and present unexplored possibilities to simultaneously enhance or modulate cofactor transporters and enzymes of independent biosynthetic pathways.


Assuntos
Niacina , Niacina/metabolismo , Riboflavina , Tiamina/análise
3.
Chem Res Toxicol ; 35(4): 616-625, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35324152

RESUMO

Dihydroxyacetone (DHA) is a major byproduct of e-cigarette combustion and is the active ingredient in sunless tanning products. Mounting evidence points to its damaging effects on cellular functions. While developing a simple synthetic route to monomeric [13C3]DHA for flux metabolic studies that compared DHA and glyceraldehyde (GA) metabolism, we uncovered that solid DHA ages upon storage and differences in the relative abundance of each of its isomer occur when reconstituted in an aqueous solution. While all three of the dimeric forms of DHA ultimately resolve to the ketone and hydrated forms of monomeric DHA once in water at room temperature, these species require hours rather than minutes to reach an equilibrium favoring the monomeric species. Consequently, when used in bolus or flux experiments, the relative abundance of each isomer and its effects at the time of application is dependent on the initial DHA isomeric composition and concentration, and time of equilibration in solution before use. Here, we make recommendations for the more consistent handling of DHA as we report conditions that ensure that DHA is present in its monomeric form while in solutions, conditions used in an isotopic tracing study that specifically compared monomeric DHA and GA metabolism in cells.


Assuntos
Di-Hidroxiacetona , Sistemas Eletrônicos de Liberação de Nicotina , Isomerismo , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA