Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 7959, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198326

RESUMO

Current methods for assessing cell proliferation in 3D scaffolds rely on changes in metabolic activity or total DNA, however, direct quantification of cell number in 3D scaffolds remains a challenge. To address this issue, we developed an unbiased stereology approach that uses systematic-random sampling and thin focal-plane optical sectioning of the scaffolds followed by estimation of total cell number (StereoCount). This approach was validated against an indirect method for measuring the total DNA (DNA content); and the Bürker counting chamber, the current reference method for quantifying cell number. We assessed the total cell number for cell seeding density (cells per unit volume) across four values and compared the methods in terms of accuracy, ease-of-use and time demands. The accuracy of StereoCount markedly outperformed the DNA content for cases with ~ 10,000 and ~ 125,000 cells/scaffold. For cases with ~ 250,000 and ~ 375,000 cells/scaffold both StereoCount and DNA content showed lower accuracy than the Bürker but did not differ from each other. In terms of ease-of-use, there was a strong advantage for the StereoCount due to output in terms of absolute cell numbers along with the possibility for an overview of cell distribution and future use of automation for high throughput analysis. Taking together, the StereoCount method is an efficient approach for direct cell quantification in 3D collagen scaffolds. Its major benefit is that automated StereoCount could accelerate research using 3D scaffolds focused on drug discovery for a wide variety of human diseases.


Assuntos
Colágeno , Alicerces Teciduais , Humanos , Contagem de Células/métodos , Engenharia Tecidual , Proliferação de Células
3.
J Mater Chem B ; 9(40): 8530, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34622917

RESUMO

Correction for 'Poly(acrylic acid)-mediated synthesis of cerium oxide nanoparticles with variable oxidation states and their effect on regulating the intracellular ROS level' by Xiaohui Ju et al., J. Mater. Chem. B, 2021, 9, 7386-7400, DOI: 10.1039/D1TB00706H.

4.
J Mater Chem B ; 9(36): 7386-7400, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551046

RESUMO

Cerium oxide nanoparticles (CeNPs) possess multiple redox enzyme mimetic activities in scavenging reactive oxygen species (ROS) as a potential biomedicine. These enzymatic activities of CeNPs are closely related to their surface oxidation state. Here we have reported a synthetic method to modify CeNPs' surface oxidation state by changing the conformation of the poly(acrylic acid) (PAA) polymers adsorbed onto the CeNP surface. The synthesized PAA-CeNPs exhibited the same core size, morphology, crystal structure, and colloidal stability, with the only variation being their surface oxidation state (Ce3+ percentage). The modification mechanism can be attributed to the polymers chemisorbed onto the metal oxide surface forming a metal complexation structure. Such adsorption further modified CeNPs' surface oxidation state in a temperature-dependent manner. The series of PAA-CeNPs exhibited multiple redox enzyme mimetic activities (superoxide dismutase, catalase, peroxidase, and oxidase) directly related to their surface oxidation state. In vitro experiments showed no cytotoxic effect of these PAA-CeNPs on the osteoblastic cell line SAOS-2 at high loadings. Microscopic images confirmed the internalization of PAA-CeNPs in the cells. All tested PAA-CeNPs can reduce the basal and hydrogen peroxide-induced intracellular ROS level in the cells, indicating their effective intracellular ROS scavenging effect. However, we did not observe a positive correlation between the CeNP surface oxidation state and their capacities to reduce the intracellular ROS levels. We propose that CeNPs can maintain a dynamic state of Ce3+/Ce4+ during their catalytic activities, exhibiting a non-linear correlation between the CeNP surface oxidation state and their effect on regulating the intracellular ROS level.


Assuntos
Resinas Acrílicas/química , Cério/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/química , Catálise , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Oxirredução , Tamanho da Partícula , Espécies Reativas de Oxigênio/química
5.
Nanomaterials (Basel) ; 10(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235697

RESUMO

Ultra-small nanoparticles with sizes comparable to those of pores in the cellular membrane possess significant potential for application in the field of biomedicine. Silicon carbide ultra-small nanoparticles with varying surface termination were tested for the biological system represented by different human cells (using a human osteoblastic cell line as the reference system and a monocyte/macrophage cell line as immune cells). The three tested nanoparticle surface terminations resulted in the observation of different effects on cell metabolic activity. These effects were mostly noticeable in cases of monocytic cells, where each type of particle caused a completely different response ('as-prepared' particles, i.e., were highly cytotoxic, -OH terminated particles slightly increased the metabolic activity, while -NH2 terminated particles caused an almost doubled metabolic activity) after 24 h of incubation. Subsequently, the release of cytokines from such treated monocytes and their differentiation into activated cells was determined. The results revealed the potential modulation of immune cell behavior following stimulation with particular ultra-small nanoparticles, thus opening up new fields for novel silicon carbide nanoparticle biomedical applications.

6.
RSC Adv ; 10(65): 39373-39384, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35515371

RESUMO

One of the biggest challenges for the biomedical applications of cerium oxide nanoparticles (CeNPs) is to maintain their colloidal stability and catalytic activity as enzyme mimetics after nanoparticles enter the human cellular environment. This work examines the influences of CeNP surface properties on their colloidal stability and catalytic activity in cell culture media (CCM). Near-spherical CeNPs stabilized via different hydrophilic polymers were prepared through a wet-chemical precipitation method. CeNPs were stabilized via either electrostatic forces, steric forces, or a combination of both, generated by surface functionalization. CeNPs with electrostatic stabilization adsorb more proteins compared to CeNPs with only steric stabilization. The protein coverage further improves CeNPs colloidal stability in CCM. CeNPs with steric polymer stabilizations exhibited better resistance against agglomeration caused by the high ionic strength in CCM. These results suggest a strong correlation between CeNPs intrinsic surface properties and the extrinsic influences of the environment. The most stabilized sample in CCM is poly(acrylic acid) coated CeNPs (PAA-CeNPs), with a combination of both electrostatic and steric forces on the surface. It shows a hydrodynamic diameter of 15 nm while preserving 90% of its antioxidant activity in CCM. PAA-CeNPs are non-toxic to the osteoblastic cell line SAOS-2 and exhibit promising potential as a therapeutic alternative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA