RESUMO
The morbidity associated with pediatric medulloblastoma, in particular in patients who develop leptomeningeal metastases, remains high in the absence of effective therapies. Administration of substances directly into the cerebrospinal fluid (CSF) is one approach to circumvent the blood-brain barrier and focus delivery of drugs to the site of tumor. However, high rates of CSF turnover prevent adequate drug accumulation and lead to rapid systemic clearance and toxicity. Here, we show that PLA-HPG nanoparticles, made with a single-emulsion, solvent evaporation process, can encapsulate talazoparib, a PARP inhibitor (BMN-673). These degradable polymer nanoparticles improve the therapeutic index when delivered intrathecally and lead to sustained drug retention in the tumor as measured with PET imaging and fluorescence microscopy. We demonstrate that administration of these particles into the CSF, alone or in combination with systemically administered temozolomide, is a highly effective therapy for tumor regression and prevention of leptomeningeal spread in xenograft mouse models of medulloblastoma. These results provide a rationale for harnessing nanoparticles for the delivery of drugs limited by brain penetration and therapeutic index and demonstrate important advantages in tolerability and efficacy for encapsulated drugs delivered locoregionally.
Assuntos
Antineoplásicos , Neoplasias Cerebelares , Meduloblastoma , Nanopartículas , Criança , Humanos , Camundongos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Meduloblastoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Líquido CefalorraquidianoRESUMO
(1) Purpose: The glycoprotein non-metastatic melanoma B (gpNMB) is a type 1 transmembrane protein that is overexpressed in numerous cancers, including triple-negative breast cancer (TNBC). Its overexpression is associated with lower overall survival of patients with TNBC. Tyrosine kinase inhibitors such as dasatinib can upregulate gpNMB expression, which has the potential to enhance therapeutic targeting with anti-gpNMB antibody drug conjugates such as glembatumumab vedotin (CDX-011). Our primary aim is to quantify the degree and identify the timeframe of gpNMB upregulation in xenograft models of TNBC after treatment with the Src tyrosine kinase inhibitor, dasatinib, by longitudinal positron emission tomography (PET) imaging with the 89Zr-labeled anti-gpNMB antibody ([89Zr]Zr-DFO-CR011). The goal is to identify the timepoint at which to administer CDX-011 after treatment with dasatinib to enhance therapeutic efficacy using noninvasive imaging. (2) Methods: First, TNBC cell lines that either express gpNMB (MDA-MB-468) or do not express gpNMB (MDA-MB-231) were treated with 2 µM of dasatinib in vitro for 48 h, followed by Western blot analysis of cell lysates to determine differences in gpNMB expression. MDA-MB-468 xenografted mice were also treated with 10 mg/kg of dasatinib every other day for 21 days. Subgroups of mice were euthanized at 0-, 7-, 14-, and 21-days post treatment, and tumors were harvested for Western blot analysis of tumor cell lysates for gpNMB expression. In a different cohort of MDA-MB-468 xenograft models, longitudinal PET imaging with [89Zr]Zr-DFO-CR011 was performed before treatment at 0 (baseline) and at 14 and 28 days after treatment with (1) dasatinib alone (2) CDX-011 (10 mg/kg) alone, or (3) sequential treatment of dasatinib for 14 days then CDX-011 to determine changes in gpNMB expression in vivo relative to baseline. As a gpNMB-negative control, MDA-MB-231 xenograft models were imaged 21 days after treatment with dasatinib, combination of CDX-011 and dasatinib, and vehicle control. (3) Results: Western blot analysis of MDA-MB-468 cell and tumor lysates showed that dasatinib increased expression of gpNMB in vitro and in vivo at 14 days post treatment initiation. In PET imaging studies of different cohorts of MDA-MB-468 xenografted mice, [89Zr]Zr-DFO-CR011 uptake in tumors (SUVmean = 3.2 ± 0.3) was greatest at 14 days after treatment initiation with dasatinib (SUVmean = 4.9 ± 0.6) or combination of dasatinib and CDX-011 (SUVmean= 4.6 ± 0.2) compared with that at baseline (SUVmean = 3.2 ± 0.3). The highest tumor regression after treatment was observed in the combination-treated group with a percent change in tumor volume relative to baseline (%CTV) of -54 ± 13 compared with the vehicle control-treated group (%CTV = +102 ± 27), CDX-011 group (%CTV = -25 ± 9.8), and dasatinib group (%CTV = -23 ± 11). In contrast, the PET imaging of MDA-MB-231 xenografted mice indicated no significant difference in the tumor uptake of [89Zr]Zr-DFO-CR011 between treated (dasatinib alone or in combination with CDX-011) and vehicle-control groups. (4) Conclusions: Dasatinib upregulated gpNMB expression in gpNMB-positive MDA-MB-468 xenografted tumors at 14 days post treatment initiation, which can be quantified by PET imaging with [89Zr]Zr-DFO-CR011. Furthermore, combination therapy with dasatinib and CDX-011 appears to be a promising therapeutic strategy for TNBC and warrants further investigation.
RESUMO
Determining binding affinity (KD) is an important aspect of the characterization of radiolabeled antibodies (rAb). Typically, binding affinity is represented by the equilibrium dissociation constant, KD, and can be calculated as the concentration of antibody at which half the antibody binding sites are occupied at equilibrium. This method can be generalized to any radiolabeled antibody or other protein and peptide scaffolds. In contrast to cell-based methods, the choice of immobilized antigens is particularly useful for validating binding affinities after long-term storage of antibodies, distinguishing binding affinities of fragment antigen-binding region (Fab) arms in bispecific antibody constructs, and determining if there is variability in antigen expression between different cell lines. This method involves immobilizing a fixed amount of antigen to specified wells on a breakable 96-well plate. Then, nonspecific binding was blocked in all wells with bovine serum albumin (BSA). Subsequently, the rAb was added in a concentration gradient to all wells. A range of concentrations was chosen to allow the rAb to reach saturation, i.e., a concentration of antibody at which all antigens are continuously bound by the rAb. In designated wells without immobilized antigen, nonspecific binding of the rAb can be determined. By subtracting nonspecific binding from total binding in the wells with immobilized antigen, specific binding of the rAb to the antigen can be determined. The KD of the rAb was calculated from the resulting saturation binding curve. As an example, binding affinity was determined using radiolabeled amivantamab, a bispecific antibody for epidermal growth factor receptor (EGFR) and cytoplasmic mesenchymal-epithelial transition (cMET) proteins.
Assuntos
Anticorpos Biespecíficos , Imunoconjugados , Antígenos/metabolismo , Soroalbumina BovinaRESUMO
The successful development and translation of PET imaging agents targeting ß-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer's disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.
RESUMO
There is a need for prognostic markers to select patients most likely to benefit from antibody-drug conjugate (ADC) therapy. We quantified the relationship between pretreatment PET imaging of glycoprotein nonmetastatic melanoma B (gpNMB) with 89Zr-labeled anti-gpNMB antibody ([89Zr]ZrDFO-CR011) and response to ADC therapy (CDX-011) in triple-negative breast cancer. First, we compared different PET imaging metrics and found that standardized uptake values (SUV) and tumor-to-heart SUV ratios were sufficient to delineate differences in radiotracer uptake in the tumor of four different cell- and patient-derived tumor models and achieved high standardized effect sizes. These tumor models with varying levels of gpNMB expression were imaged with [89Zr]ZrDFO-CR011 followed by treatment with a single bolus injection of CDX-011. The percent change in tumor volume relative to baseline (% CTV) was then correlated with SUVmean of [89Zr]ZrDFO-CR011 uptake in the tumor. All gpNMB-positive tumor models responded to CDX-011 over 6 weeks of treatment, except one patient-derived tumor regrew after 4 weeks of treatment. As expected, the gpNMB-negative tumor increased in volume by 130 ± 59% at endpoint. The magnitude of pretreatment SUV had the strongest inverse correlation with the % CTV at 2-4 weeks after treatment with CDX-011 (Spearman ρ = -0.8). However, pretreatment PET imaging with [89Zr]ZrDFO-CR011 did not inform on which tumor types will regrow over time. Other methods will be needed to predict resistance to treatment.