Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(8): 11801-11814, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225487

RESUMO

The present study aims to investigate the efficiency of a combined cheese wastewater treatment approach involving coagulation with ferric chloride coupled with a photo-Fenton-like oxidation process for potential reuse in irrigation. Laboratory-scale tests were conducted, examining the effect of various operational parameters on the treatment process. Specifically, the effects of initial wastewater pH, coagulant dosage, decantation time for the coagulation process, and initial pH, chemical oxygen demand (COD) concentration, and Fe3+ and H2O2 dosages for photo-Fenton-like oxidation were studied. Coagulation was found effective at natural pH of 6 and showed a highest removal efficiency in terms of COD (50.6%), biological oxygen demand BOD5 (42.1%), turbidity (99.3%), and least sludge volume generation (11.8% v/v) for an optimum coagulant dose of 400 mg Fe3+ L-1 and 8 h of decantation time. Thereafter, photo-Fenton-like oxidation (Fe3+/H2O2/UVA-300W) of the pretreated cheese effluent enhanced the removal of COD, BOD5 and TOC to 91.2%, 91.4%, and 97.5%, respectively, using the optimized conditions (pH = 3; [Fe3+] = 5.0 × 10-4 mol L-1; [H2O2] = 0.2 mol L-1 and tirr = 24 h). This study also shows that the proposed combined process allowed a significant phytotoxicity reduction toward lentil seed germination. The obtained outcome was encouraging and supports the possible use of the treated cheese wastewater as an additional water source for agricultural irrigation.


Assuntos
Queijo , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Floculação , Peróxido de Hidrogênio , Ferro , Poluentes Químicos da Água/análise , Oxirredução
2.
Toxics ; 11(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112526

RESUMO

Many approaches have been investigated to eliminate pharmaceuticals in wastewater treatment plants during the last decades. However, a lack of sustainable and efficient solutions exists for the removal of hormones by advanced oxidation processes. The aim of this study was to synthesize and test new photoactive bio composites for the elimination of these molecules in wastewater effluents. The new materials were obtained from the activated carbon (AC) of Arganian spinosa tree nutshells and titanium tetrachloride by the sol gel method. SEM analysis allowed one to confirm the formation of TiO2 particles homogeneously dispersed at the surface of AC with a controlled titanium dioxide mass ratio, a specific TiO2 anatase structure, and a highly specific surface area, evidenced by ATG, XRD, and BET analysis, respectively. The obtained composites were revealed to quantitatively absorb carbamazepine (CBZ), which is used as a referred pharmaceutical, and leading to its total elimination after 40 min under irradiation with the most effective material. TiO2 high content disfavors CBZ adsorption but improves its degradation. In the presence of the composite, three hormones (17α-ethinylestradiol, estrone, and ß-estradiol) are partially adsorbed onto the composite and totally degraded after 60 min under UV light exposure. This study constitutes a promising solution for the efficient treatment of wastewater contaminated by hormones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA