Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6614, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857603

RESUMO

Shallow magmatic reservoirs that produce measurable volcanic surface deformation are often considered as discrete independent systems. However, petrological analyses of erupted products suggest that these may be the shallowest expression of extensive, heterogeneous magmatic systems that we show may be interconnected. We analyse time series of satellite-radar-measured displacements at Western Galápagos volcanoes from 2017 to 2022 and revisit historical displacements. We demonstrate that these volcanoes consistently experience correlated displacements during periods of heightened magma supply to the shallow crust. We rule out changes in static stress, shallow hydraulic connections, and data processing and analysis artefacts. We propose that episodic surges of magma into interconnected magmatic systems affect neighbouring volcanoes, simultaneously causing correlations in volcanic uplift and subsidence. While expected to occur globally, such processes are uniquely observable at the dense cluster of Western Galápagos volcanoes, thanks to the high rate of surface displacements and the wealth of geodetic measurements.

2.
Nat Commun ; 13(1): 6169, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257960

RESUMO

Catastrophic failure in brittle, porous materials initiates when smaller-scale fractures localise along an emergent fault zone in a transition from stable crack growth to dynamic rupture. Due to the rapid nature of this critical transition, the precise micro-mechanisms involved are poorly understood and difficult to image directly. Here, we observe these micro-mechanisms directly by controlling the microcracking rate to slow down the transition in a unique rock deformation experiment that combines acoustic monitoring (sound) with contemporaneous in-situ x-ray imaging (vision) of the microstructure. We find seismic amplitude is not always correlated with local imaged strain; large local strain often occurs with small acoustic emissions, and vice versa. Local strain is predominantly aseismic, explained in part by grain/crack rotation along an emergent shear zone, and the shear fracture energy calculated from local dilation and shear strain on the fault is half of that inferred from the bulk deformation.

3.
Sci Adv ; 7(39): eabh0894, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559568

RESUMO

The propensity for dynamic earthquake triggering is thought to depend on the local stress state and amplitude of the stress perturbation. However, the nature of this dependency has not been confirmed within a single crustal volume. Here, we show that at Sierra Negra volcano, Galápagos Islands, the intensity of dynamically triggered earthquakes increased as inflation of a magma reservoir elevated the stress state. The perturbation of short-term seismicity within teleseismic surface waves also increased with peak dynamic strain. Following rapid coeruptive subsidence and reduction in stress and background seismicity rates, equivalent dynamic strains no longer triggered detectable seismicity. These findings offer direct constraints on the primary controls on dynamic triggering and suggest that the response to dynamic stresses may help constrain the evolution of volcanic unrest.

4.
Nat Commun ; 12(1): 1397, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654084

RESUMO

Recent large basaltic eruptions began after only minor surface uplift and seismicity, and resulted in caldera subsidence. In contrast, some eruptions at Galápagos Island volcanoes are preceded by prolonged, large amplitude uplift and elevated seismicity. These systems also display long-term intra-caldera uplift, or resurgence. However, a scarcity of observations has obscured the mechanisms underpinning such behaviour. Here we combine a unique multiparametric dataset to show how the 2018 eruption of Sierra Negra contributed to caldera resurgence. Magma supply to a shallow reservoir drove 6.5 m of pre-eruptive uplift and seismicity over thirteen years, including an Mw5.4 earthquake that triggered the eruption. Although co-eruptive magma withdrawal resulted in 8.5 m of subsidence, net uplift of the inner-caldera on a trapdoor fault resulted in 1.5 m of permanent resurgence. These observations reveal the importance of intra-caldera faulting in affecting resurgence, and the mechanisms of eruption in the absence of well-developed rift systems.

5.
Sci Rep ; 5: 13259, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307196

RESUMO

Elastic waves are generated when brittle materials are subjected to increasing strain. Their number and energy increase non-linearly, ending in a system-sized catastrophic failure event. Accelerating rates of geophysical signals (e.g., seismicity and deformation) preceding large-scale dynamic failure can serve as proxies for damage accumulation in the Failure Forecast Method (FFM). Here we test the hypothesis that the style and mechanisms of deformation, and the accuracy of the FFM, are both tightly controlled by the degree of microstructural heterogeneity of the material under stress. We generate a suite of synthetic samples with variable heterogeneity, controlled by the gas volume fraction. We experimentally demonstrate that the accuracy of failure prediction increases drastically with the degree of material heterogeneity. These results have significant implications in a broad range of material-based disciplines for which failure forecasting is of central importance. In particular, the FFM has been used with only variable success to forecast failure scenarios both in the field (volcanic eruptions and landslides) and in the laboratory (rock and magma failure). Our results show that this variability may be explained, and the reliability and accuracy of forecast quantified significantly improved, by accounting for material heterogeneity as a first-order control on forecasting power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA