RESUMO
ß-Diketonates, such as acetylacetonate, are amongst the most common bidentate ligands towards elements across the entire periodic table and are considered wholly redox-inactive in their complexes. Herein we show that complexation of 1,1,1,5,5,5-hexafluoroacetylacetonate (hfac- ) to CrII spontaneously affords CrIII and a reduced ß-diketonate radical ligand scaffold, as evidenced by crystallographic analysis, magnetic measurements, optical spectroscopy, reactivity studies, and DFT calculations. The possibility of harnessing ß-diketonates as electron reservoirs opens up possibilities for new metal-ligand concerted reactivity in the ubiquitous ß-diketonate coordination chemistry.
RESUMO
The quest for simple ligands that enable multi-electron metal-ligand redox chemistry is driven by a desire to replace noble metals in catalysis and to discover novel chemical reactivity. The vast majority of simple ligand systems display electrochemical potentials impractical for catalytic cycles, illustrating the importance of creating new strategies towards energetically aligned ligand frontier and transition metal d orbitals. We herein demonstrate the ability to chemically control the redox-activity of the ubiquitous acetylacetonate (acac) ligand. By employing the ligand field of high-spin Cr(ii) as a switch, we were able to chemically tailor the occurrence of metal-ligand redox events via simple coordination or decoordination of the labile auxiliary ligands. The mechanism of ligand field actuation can be viewed as a destabilization of the d z 2 orbital relative to the π* LUMO of acac, which proffers a generalizable strategy to synthetically engineer redox-activity with seemingly redox-inactive ligands.