Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(18): 11886-11897, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651233

RESUMO

We study the origin of bimodal emission in AlGaN/AlN QD superlattices displaying a high internal quantum efficiency (around 50%) in the 230-300 nm spectral range. The secondary emission at longer wavelengths is linked to the presence of cone-like domains with deformed QD layers, which originate at the first AlN buffer/superlattice interface and propagate vertically. The cones originate at a 30°-faceted shallow pit in the AlN, which appears to be associated with a threading dislocation that produces strong shear strain. The cone-like structures present Ga enrichment at the boundaring facets and larger QDs within the conic domain. The bimodality of the luminescence is attributed to the differing dot size and composition within the cones and at the faceted boundaries, which is confirmed by the correlation of microscopy results and Schrödinger-Poisson calculations.

2.
Nanotechnology ; 35(7)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37890472

RESUMO

Metal deposition with cryogenic cooling is a common technique in the condensed matter community for producing ultra-thin epitaxial superconducting layers on semiconductors. However, a significant challenge arises when these films return to room temperature, as they tend to undergo dewetting. This issue can be mitigated by capping the films with an amorphous layer. In this study, we investigate the influence of differentin situfabricated caps on the structural characteristics of Sn thin films deposited at 80 K on InSb substrates. Regardless of the type of capping, we consistently observe that the films remain smooth upon returning to room temperature and exhibit epitaxy on InSb in the cubic Sn (α-Sn) phase. Notably, we identify a correlation between alumina capping using an electron beam evaporator and an increased presence of tetragonal Sn (ß-Sn) grains. This suggests that heating from the alumina source may induce a partial phase transition in the Sn layer. The existence of theß-Sn phase induces superconducting behavior of the films by percolation effect. This study highlights the potential for tailoring the structural properties of cryogenic Sn thin films throughin situcapping. This development opens avenues for precise control in the production of superconducting Sn films, facilitating their integration into quantum computing platforms.

3.
Opt Lett ; 48(15): 3833-3836, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527061

RESUMO

We discuss a promising solid-state system that emits single photons at room temperature in the blue-green range, making it an attractive candidate for quantum communications in free space and underwater. The active element is a core-shell ZnSe tapered nanowire embedding a single CdSe quantum dot grown by molecular beam epitaxy. A patterned substrate enables a comprehensive study of a single nanowire using various methods. Our source shows potential for achieving a total brightness of 0.17 photon per pulse and anti-bunching with g(2)(0) < 0.3 within a restricted spectral window. Additionally, we analyze the impact of charged excitons on the g(2)(0) value in different spectral ranges.

4.
Opt Express ; 30(14): 25219-25233, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237057

RESUMO

We report net gain measurements at room temperature in Al0.07Ga0.93N/GaN 10-period multi-quantum well layers emitting at 367 nm, using the variable stripe length method. The separate confinement heterostructure was designed targeting electron-beam pumped lasing at 10 kV. The highest net gain value was 131 cm-1, obtained at the maximum pumping power density of the experimental setup (743 kW/cm2). The net gain threshold was attained at 218 kW/cm2 using 193 nm optical pumping. From these experiments, we predict an electron-beam-pumped lasing threshold of 370 kW/cm2 at room temperature, which is compatible with the use of compact cathodes (e.g. carbon nanotubes). In some areas of the sample, we observed an anomalous amplification of the photoluminescence intensity that occurs for long stripe lengths (superior to 400 µm) and high pumping power (superior to 550 kW/cm2), leading to an overestimation of the net gain value. We attribute such a phenomenon to the optical feedback provided by the reflection from cracks, which were created during the epitaxial growth due to the strong lattice mismatch between different layers.

5.
ACS Nano ; 16(3): 4397-4407, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276038

RESUMO

The growth of ZnTe nanowires and ZnTe-CdTe nanowire heterostructures is studied by in situ transmission electron microscopy. We describe the shape and the change of shape of the solid gold nanoparticle during vapor-solid-solid growth. We show the balance between one monolayer and two monolayer steps, which characterizes the vapor-liquid-solid and vapor-solid-solid growth modes of ZnTe. We discuss the likely role of the mismatch strain and lattice coincidence between gold and ZnTe on the predominance of two monolayer steps during vapor-solid-solid growth and on the subsequent self-regulation of the step dynamics. Finally, the formation of an interface between CdTe and ZnTe is described.

6.
Nanotechnology ; 33(25)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276681

RESUMO

The early stage of growth of semiconductor nanowires is studied in the case where the sidewall adatoms have a short diffusion length due to a strong desorption. Experimental results are described for the growth of ZnSe nanowires by molecular beam epitaxy. They are discussed and interpreted using the Burton-Cabrera-Frank description of the propagation of steps along the sidewalls, and compared to other II-VI and III-V nanowires. The role of the growth parameters and the resulting shape of the nanowires (cylinder, cone, or both combined) are highlighted.

7.
Opt Express ; 29(9): 13084-13093, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985051

RESUMO

We present a study of undoped AlGaN/GaN separate confinement heterostructures designed to operate as electron beam pumped ultraviolet lasers. We discuss the effect of spontaneous and piezoelectric polarization on carrier diffusion, comparing the results of cathodoluminescence with electronic simulations of the band structure and Monte Carlo calculations of the electron trajectories. Carrier collection is significantly improved using an asymmetric graded-index separate confinement heterostructure (GRINSCH). The graded layers avoid potential barriers induced by polarization differences in the heterostructure and serve as strain transition buffers which reduce the mosaicity of the active region and the linewidth of spontaneous emission.

8.
ACS Appl Mater Interfaces ; 13(3): 4165-4173, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33449632

RESUMO

Attaining low-resistivity AlxGa1-xN layers is one keystone to improve the efficiency of light-emitting devices in the ultraviolet spectral range. Here, we present a microstructural analysis of AlxGa1-xN/Ge samples with 0 ≤ x ≤ 1, and a nominal doping level in the range of 1020 cm-3, together with the measurement of Ge concentration and its spatial distribution down to the nanometer scale. AlxGa1-xN/Ge samples with x ≤ 0.2 do not present any sign of inhomogeneity. However, samples with x > 0.4 display µm-size Ge crystallites at the surface. Ge segregation is not restricted to the surface: Ge-rich regions with a size of tens of nanometers are observed inside the AlxGa1-xN/Ge layers, generally associated with Ga-rich regions around structural defects. With these local exceptions, the AlxGa1-xN/Ge matrix presents a homogeneous Ge composition which can be significantly lower than the nominal doping level. Precise measurements of Ge in the matrix provide a view of the solubility diagram of Ge in AlxGa1-xN as a function of the Al mole fraction. The solubility of Ge in AlN is extremely low. Between AlN and GaN, the solubility increases linearly with the Ga mole fraction in the ternary alloy, which suggests that the Ge incorporation takes place by substitution of Ga atoms only. The maximum percentage of Ga sites occupied by Ge saturates around 1%. The solubility issues and Ge segregation phenomena at different length scales likely play a role in the efficiency of Ge as an n-type AlGaN dopant, even at Al concentrations where Ge DX centers are not expected to manifest. Therefore, this information can have direct impact on the performance of Ge-doped AlGaN light-emitting diodes, particularly in the spectral range for disinfection (≈260 nm), which requires heavily doped alloys with a high Al mole fraction.

9.
Nanotechnology ; 32(2): 025601, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32906087

RESUMO

The mechanisms of plasma-assisted molecular beam epitaxial growth of GaN on muscovite mica were investigated. Using a battery of techniques, including scanning and transmission electron microscopy, atomic force microscopy, cathodoluminescence, Raman spectroscopy and x-ray diffraction, it was possible to establish that, in spite of the lattice symmetry mismatch, GaN grows in epitaxial relationship with mica, with the [11-20] GaN direction parallel to [010] direction of mica. GaN layers could be easily detached from the substrate via the delamination of the upper layers of the mica itself, discarding the hypothesis of a van der Waals growth mode. Mixture of wurtzite (hexagonal) and zinc blende (ZB) (cubic) crystallographic phases was found in the GaN layers with ratios highly dependent on the growth conditions. Interestingly, almost pure ZB GaN epitaxial layers could be obtained at high growth temperature, suggesting the existence of a specific GaN nucleation mechanism on mica and opening a new way to the growth of the thermodynamically less stable ZB GaN phase.

10.
Nanotechnology ; 30(5): 054002, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500783

RESUMO

We present a systematic study of top-down processed GaN/AlN heterostructures for intersubband optoelectronic applications. Samples containing quantum well superlattices that display either near- or mid-infrared intersubband absorption were etched into nano- and micro-pillar arrays in an inductively coupled plasma. We investigate the influence of this process on the structure and strain-state, on the interband emission and on the intersubband absorption. Notably, for pillar spacings significantly smaller (≤1/3) than the intersubband wavelength, the magnitude of the intersubband absorption is not reduced even when 90% of the material is etched away and a similar linewidth is obtained. The same holds for the interband emission. In contrast, for pillar spacings on the order of the intersubband absorption wavelength, the intersubband absorption is masked by refraction effects and photonic crystal modes. The presented results are a first step towards micro- and nano-structured group-III nitride devices relying on intersubband transitions.

11.
Nanotechnology ; 28(25): 255602, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28475104

RESUMO

GaAs-based nanowires (NWs) can be grown without extrinsic catalyst using the Ga-assisted vapor-liquid-solid method in an epitaxy reactor, on Si(111) substrates covered with native oxide. Despite its wide use, the conventional method fails to provide a good control over uniformity, reproducibility, and yield of vertical NWs. The nucleation of GaAs NWs is very sensitive to the properties of the native oxide such as chemical composition, roughness and porosity. Consequently, samples grown under the same conditions on Si(111) substrates from different manufacturing batches often produce dramatically different growth results. In order to remove the dependence on wafer batch, a controlled chemical oxidation process is developed to replace the native oxide on Si(111) substrate with a reproducible chemical oxide. A high yield (exceeding 90%) of vertical GaAs NWs is achieved with excellent uniformity on chemical oxide-covered substrate. As an added advantage, the crystalline quality is significantly improved over that of GaAs NWs grown on native oxide-covered substrate, and pure zinc blende crystal structure can be achieved with minimal defects. In addition, the chemical oxide can be used as a template for producing different combinations of NW densities and sizes in parallel on the same wafer using the same growth conditions.

12.
Nanotechnology ; 27(18): 185201, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001959

RESUMO

We report on the deterministic coupling between single semiconducting nanowire quantum dots emitting in visible and plasmonic Au nanoantennas. Both systems are separately and carefully characterized through micro-photoluminescence and cathodoluminescence. A two-step realignment process using cathodoluminescence allows for electron-beam lithography of Au antennas near individual nanowire quantum dots with a precision of 50 nm. A complete set of optical properties was measured before and after antenna fabrication. They evidence both an increase of the nanowire absorption, and an improvement of the quantum dot emission rate up to a factor of two in presence of the antenna.

13.
Nat Mater ; 5(8): 653-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16845420

RESUMO

The emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix. The average diameter of these nanocolumns is 3nm and their spacing is 10nm. Their composition is close to Ge(2)Mn, which corresponds to an unknown germanium-rich phase, and they have a uniaxially elongated diamond structure. Their Curie temperature is higher than 400K. Magnetotransport reveals a pronounced anomalous Hall effect up to room temperature. A giant positive magnetoresistance is measured from 7,000% at 30K to 200% at 300K and 9T, with no evidence of saturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA