Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 13: 480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695598

RESUMO

Amyotrophic lateral sclerosis (ALS) arises from an interplay of genetic mutations and environmental factors. ssRNA viruses are possible ALS risk factors, but testing their interaction with mutations such as in FUS, which encodes an RNA-binding protein, has been difficult due to the lack of a human disease model. Here, we use isogenic induced pluripotent stem cell (iPSC)-derived spinal neurons (SNs) to investigate the interaction between ssRNA viruses and mutant FUS. We find that rabies virus (RABV) spreads ALS phenotypes, including the formation of stress granules (SGs) with aberrant composition due to increased levels of FUS protein, as well as neurodegeneration and reduced restriction activity by FUS mutations. Consistent with this, iPSC-derived SNs harboring mutant FUS are more sensitive to human immunodeficiency virus (HIV-1) and Zika viruses (ZIKV). We demonstrate that RABV and HIV-1 exacerbate cytoplasmic mislocalization of FUS. Our results demonstrate that viral infections worsen ALS pathology in SNs with genetic risk factors, suggesting a novel role for viruses in modulating patient phenotypes.

2.
Biomaterials ; 225: 119537, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614290

RESUMO

Neuromuscular circuits (NMCs) are vital for voluntary movement, and effective models of NMCs are needed to understand the pathogenesis of, as well as to identify effective treatments for, multiple diseases, including Duchenne's muscular dystrophy and amyotrophic lateral sclerosis. Microfluidics are ideal for recapitulating the central and peripheral compartments of NMCs, but myotubes often detach before functional NMCs are formed. In addition, microfluidic systems are often limited to a single experimental unit, which significantly limits their application in disease modeling and drug discovery. Here, we developed a microfluidic platform (MFP) containing over 100 experimental units, making it suitable for medium-throughput applications. To overcome detachment, we incorporated a reactive polymer surface allowing customization of the environment to culture different cell types. Using this approach, we identified conditions that enable long-term co-culture of human motor neurons and myotubes differentiated from human induced pluripotent stem cells inside our MFP. Optogenetics demonstrated the formation of functional NMCs. Furthermore, we developed a novel application of the rabies tracing assay to efficiently identify NMCs in our MFP. Therefore, our MFP enables large-scale generation and quantification of functional NMCs for disease modeling and pharmacological drug targeting.


Assuntos
Microfluídica/métodos , Junção Neuromuscular/fisiologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Laminina/farmacologia , Maleatos/química , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Peptídeos/farmacologia , Gases em Plasma/química , Polietilenos/química
3.
NPJ Parkinsons Dis ; 5: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30963107

RESUMO

Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the LRRK2-G2019S mutation recapitulate disease-relevant phenotypes. Automated high-content image analysis shows a decrease in the number and complexity of mDANs in LRRK2-G2019S compared to control organoids. The floor plate marker FOXA2, required for mDAN generation, increases in PD patient-derived midbrain organoids, suggesting a neurodevelopmental defect in mDANs expressing LRRK2-G2019S. Thus, we provide a robust method to reproducibly generate 3D human midbrain organoids containing mDANs to investigate PD-relevant patho-mechanisms.

4.
Methods Mol Biol ; 1888: 21-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30519939

RESUMO

High-throughput phenotypic screening enables the identification of new therapeutic targets even when the molecular mechanism underlying the disease is unknown. In the case of neurodegenerative disease, there is a dire need to identify new targets that can ameliorate, halt, or reverse degeneration. Stem cell-based disease models are particularly powerful tools for phenotypic screening because they use the same cell type affected in patients. Here, we describe the expansion of mouse stem cells and human induced pluripotent stem cells as well as the differentiation of these cells into neural lineages that, when exposed to neuroinflammatory stress, can be used for compound screening followed by hit identification, validation, and target deconvolution.


Assuntos
Técnicas de Cultura de Células , Descoberta de Drogas , Fenótipo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diferenciação Celular , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Células-Tronco/citologia
5.
Mol Vis ; 19: 2058-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146539

RESUMO

PURPOSE: Transplantation of cells into retinas affected by degenerative diseases to replace dying photoreceptors represents a promising therapeutic approach. Young photoreceptors of 4-day-old mice show the highest capacity to integrate into the retinas of adult mice following grafting. Additional enrichment of these donor cells before transplantation with cell surface marker-dependent sorting methods further increases success rates. Currently, defined cell surface markers specific for transplantable photoreceptors that can be used for enrichment are limited. Therefore, identifying alternative targets would be advantageous. METHODS: Microarray data of young rod photoreceptors were analyzed using the Database for Annotation, Visualization and Integrated Discovery combined with a literature search to identify genes encoding for proteins containing extracellular domains. Candidate genes were further analyzed with reverse transcriptase polymerase chain reaction (RT-PCR) for their retinal specificity. In situ hybridization and immunohistochemistry were used to identify their localization within the retina. RESULTS: Enrichment of candidates by Database for Annotation, Visualization and Integrated Discovery revealed 65 proteins containing extracellular domains. Reverse transcriptase polymerase chain reaction identified Atp8a2, Cacna2d4, Cadm2, Cnga1, Kcnv2, and Pcdh21 as expressed in the retina and only a few additional tissues. In situ hybridization and immunohistochemistry showed specificity of Cacna2d4, Kcnv2, and Pcdh21 for photoreceptors in the retinas of young mice. CONCLUSIONS: Cacna2d4, Kcnv2, and Cnga1 were identified as specific for target cells in the retinas of young mice and could serve as candidates for rod photoreceptor enrichment to replace cells in retinal degenerative diseases.


Assuntos
Biomarcadores/metabolismo , Membrana Celular/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/transplante , Envelhecimento/genética , Envelhecimento/patologia , Animais , Caderinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Células Fotorreceptoras Retinianas Bastonetes/citologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA