Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 13(1): 256, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715829

RESUMO

The most frequent biochemical defect of inherited mitochondrial disease is isolated complex I deficiency. There is no cure for this disorder, and treatment is mainly supportive. In this study, we investigated the effects of human mesenchymal stem cells (MSCs) on skin fibroblast derived from three individuals with complex I deficiency carrying different pathogenic variants in mitochondrial DNA-encoded subunits (MT-ND3, MT-ND6). Complex I-deficient fibroblasts were transiently co-cultured with bone marrow-derived MSCs. Mitochondrial transfer was analysed by fluorescence labelling and validated by Sanger sequencing. Levels of reactive oxygen species (ROS) were measured using MitoSOX Red. Moreover, mitochondrial respiration was analysed by Seahorse XFe96 Extracellular Flux Analyzer. Levels of antioxidant proteins were investigated via immunoblotting. Co-culturing of complex I-deficient fibroblast with MSCs lowered cellular ROS levels. The effect on ROS production was more sustained compared to treatment of patient fibroblasts with culture medium derived from MSC cultures. Investigation of cellular antioxidant defence systems revealed an upregulation of SOD2 (superoxide dismutase 2, mitochondrial) and HO-1 (heme oxygenase 1) in patient-derived cell lines. This adaptive response was normalised upon MSC treatment. Moreover, Seahorse experiments revealed a significant improvement of mitochondrial respiration, indicating a mitigation of the oxidative phosphorylation defect. Experiments with repetitive MSC co-culture at two consecutive time points enhanced this effect. Our study indicates that MSC-based treatment approaches might constitute an interesting option for patients with mitochondrial DNA-encoded mitochondrial diseases. We suggest that this strategy may prove more promising for defects caused by mitochondrial DNA variants compared to nuclear-encoded defects.


Assuntos
Antioxidantes , Células-Tronco Mesenquimais , Antioxidantes/metabolismo , Linhagem Celular , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Homeostase , Humanos , Células-Tronco Mesenquimais/metabolismo , Doenças Mitocondriais , NADH Desidrogenase/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA