Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(5): 2646-2655, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258382

RESUMO

The envelope (E) protein of SARS-CoV-2 participates in virion encapsulation and budding at the membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC). The positively curved membrane topology required to fit an 80 nm viral particle is energetically unfavorable; therefore, viral proteins must facilitate ERGIC membrane curvature alteration. To study the possible role of the E protein in this mechanism, we examined the structural modification of the host lipid membrane by the SARS-CoV-2 E protein using synchrotron-based X-ray methods. Our reflectometry results on solid-supported planar bilayers show that E protein markedly condenses the surrounding lipid bilayer. For vesicles, this condensation effect differs between the two leaflets such that the membrane becomes asymmetric and increases its curvature. The formation of such a curved and condensed membrane is consistent with the requirements to stably encapsulate a viral core and supports a role for E protein in budding during SARS-CoV-2 virion assembly.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Montagem de Vírus , Proteínas Virais , Proteínas do Envelope Viral/química
2.
Heliyon ; 8(12): e11878, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590569

RESUMO

The remarkable optoelectronic capabilities of perovskite structures enable the achievement of astonishingly high-power conversion efficiencies on the laboratory scale. However, a critical bottleneck of perovskite solar cells is their sensitivity to the surrounding humid environment affecting drastically their long-term stability. Internal additive materials together with surface passivation, polymer-mixed perovskite, and quantum dots, have been investigated as possible strategies to enhance device stability even in unfavorable conditions. Quantum dots (QDs) in perovskite solar cells enable power conversion efficiencies to approach 20%, making such solar cells competitive to silicon-based ones. This mini-review summarized the role of such QDs in the perovskite layer, hole-transporting layer (HTL), and electron-transporting layer (ETL), demonstrating the continuous improvement of device efficiencies.

3.
Biochim Biophys Acta Biomembr ; 1863(1): 183472, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941874

RESUMO

Amphiphilic block copolymers form self-assembled bilayers even in combination with phospholipids. They represent an attractive alternative to native lipid-based membrane systems for supported bilayer formation with applications in biomedical research, sensoring and drug delivery. Their enhanced stability and excellent mechanical properties are linked to their higher molecular weight which generates thicker bilayers. Hypothesis: It is hypothesized that reducing the molecular weight of the polymer facilitates the formation of a thinner, more homogeneous polymer/lipid hybrid bilayer which would benefit the formation of supported bilayers on silicon oxide. Experiment: We investigated hybrid bilayers composed of mixtures of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and increasing amounts of a low molecular weight polybutadiene-b-polyethylene oxide copolymer (1050 g/mol). By assessing the bilayer thickness and the molecular packing behavior we sought to demonstrate how reducing the polymer molecular weight increases the tendency to form supported hybrid bilayers in a lipid-like manner. Findings: The formation of a supported hybrid bilayers occurs at polymer contents <70 mol% in a lipid-like fashion and is proportional to the cohesive forces between the bilayer components and inversely related to the bilayer hydrophobic core thickness and the extended brush regime of the PEGylated polymeric headgroup.


Assuntos
Bicamadas Lipídicas/química , Modelos Químicos , Fosforilcolina/química , Polímeros/química , Peso Molecular
4.
Anal Chem ; 92(12): 8097-8107, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32396367

RESUMO

Synchrotron resonance-enhanced infrared atomic force microscopy (RE-AFM-IR) is a near-field photothermal vibrational nanoprobe developed at Diamond Light Source (DLS), capable of measuring mid-infrared absorption spectra with spatial resolution around 100 nm. The present study reports a first application of synchrotron RE-AFM-IR to interrogate biological soft matter at the subcellular level, in this case, on a cellular model of drug-induced phospholipidosis (DIPL). J774A-1 macrophages were exposed to amiodarone (10 µM) or medium for 24 h and chemically fixed. AFM topography maps revealed amiodarone-treated cells with enlarged cytoplasm and very thin regions corresponding to collapsed vesicles. IR maps of the whole cell were analyzed by exploiting the RE-AFM-IR overall signal, i.e., the integrated RE-AFM-IR signal amplitude versus AFM-derived cell thickness, also on lateral resolution around 100 nm. Results show that vibrational band assignment was possible, and all characteristic peaks for lipids, proteins, and DNA/RNA were identified. Both peak ratio and unsupervised chemometric analysis of RE-AFM-IR nanospectra generated from the nuclear and perinuclear regions of untreated and amiodarone-treated cells showed that the perinuclear region (i.e., cytoplasm) of amiodarone-treated cells had significantly elevated band intensities in the regions corresponding to phosphate and carbonyl groups, indicating detection of phospholipid-rich inclusion bodies typical for cells with DIPL. The results of this study are of importance to demonstrate not only the applicability of Synchrotron RE-AFM-IR to soft biological matters with subcellular spatial resolution but also that the spectral information gathered from an individual submicron sample volume enables chemometric identification of treatment and biochemical differences between mammalian cells.


Assuntos
Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Macrófagos/efeitos dos fármacos , Fosfolipídeos/antagonistas & inibidores , Síncrotrons , Temperatura , Animais , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Fosfolipídeos/metabolismo , Processos Fotoquímicos , Espectrofotometria Infravermelho
5.
J Membr Biol ; 250(5): 441-453, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28735341

RESUMO

Polymersomes, vesicles composed of block copolymers, are promising candidates as membrane alternatives and functional containers, e.g., as potential carriers for functional molecules because of their stability and tunable membrane properties. In the scope of possible use for membrane protein delivery to cells by electrofusion, we investigated the cytotoxicity of such polymersomes as well as the effects of nanosecond electric pulses with variable repetition rate on the shape and permeability of polymersomes in buffers with different conductivities. The polymersomes did not show cytotoxic effects to CHO and B16-F1 cells in vitro in concentrations up to 250 µg/mL (for 48 h) or 1.35 mg/mL (for 60 min), which renders them suitable for interacting with living cells. We observed a significant effect of the pulse repetition rate on electrodeformation of the polymersomes. The electrodeformation was most pronounced in low conductivity buffer, which is favorable for performing electrofusion with cells. However, despite more pronounced deformation at higher pulse repetition rate, the electroporation performance of polymersomes was unaffected and remained in similar ranges both at 10 Hz and 10 kHz. This phenomenon is possibly due to the higher stability and rigidity of polymer vesicles, compared to liposomes, and can serve as an advantage (or disadvantage) depending on the aim in employing polymersomes such as stable membrane alternative architectures or drug vehicles.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Eletroquimioterapia/métodos , Animais , Células CHO , Cricetulus , Camundongos
6.
Biochim Biophys Acta ; 1858(2): 197-209, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26592318

RESUMO

The influence of Escherichia coli rough lipopolysaccharide chemotype on the membrane activity of the mammalian antimicrobial peptides (AMPs) human cathelicidin (LL37) and bovine lactoferricin (LFb) was studied on bilayers using solid state (2)H NMR (ssNMR) and on monolayers using the subphase injection technique, Brewster angle microscopy (BAM) and neutron reflectivity (NR). The two AMPs were selected because of their differing biological activities. Chain-deuterated dipalmitoylphosphatidylcholine (d62-DPPC) was added to the LPS samples, to highlight alterations in the system properties caused by the presence of the different LPS chemotypes and upon AMP challenge. Both LPS chemotypes showed a temperature dependent influence on the packing of the DPPC molecules, with a fluidizing effect exerted below the DPPC phase transition temperature (Tm), and an ordering effect observed above the Tm. The magnitude of these effects was influenced by LPS structure; the shorter Rc LPS promoted more ordered lipid packing compared to the longer Ra LPS. These differential ordering effects in turn influenced the penetrative activity of the two peptides, as the perturbation induced by both AMPs to Ra LPS-containing models was greater than that observed in those containing Rc LPS. The NR data suggests that in addition to penetrating into the monolayers, both LL37 and LFb formed a non-interacting layer below the LPS/DPPC monolayer. The overall activity of LL37, which showed a deeper penetration into the model membranes, was more marked than that of LFb, which appeared to localise at the interfacial region, thus providing evidence for the molecular origins of their different biological activities.


Assuntos
Catelicidinas/química , Escherichia coli/química , Lactoferrina/química , Lipopolissacarídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Peptídeos Catiônicos Antimicrobianos , Bovinos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
7.
Langmuir ; 31(2): 741-51, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25514503

RESUMO

The biophysical analysis of the aggregates formed by different chemotypes of bacterial lipopolysaccharides (LPS) before and after challenge by two different antiendotoxic antimicrobial peptides (LL37 and bovine lactoferricin) was performed in order to determine their effect on the morphology of LPS aggregates. Small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryoTEM) were used to examine the structures formed by both smooth and rough LPS chemotypes and the effect of the peptides, by visualization of the aggregates and analysis of the scattering data by means of both mathematical approximations and defined models. The data showed that the structure of LPS determines the morphology of the aggregates and influences the binding activity of both peptides. The morphologies of the worm-like micellar aggregates formed by the smooth LPS were relatively unaltered by the presence of the peptides due to their pre-existing high degree of positive curvature being little affected by their association with either peptide. On the other hand, the aggregates formed by the rough LPS chemotypes showed marked morphological changes from lamellar structures to ordered micellar networks, induced by the increase in positive curvature engendered upon association with the peptides. The combined use of cryoTEM and SANS proved to be a very useful tool for studying the aggregation properties of LPS in solution at biologically relevant concentrations.


Assuntos
Anti-Infecciosos/química , Lipopolissacarídeos/química , Peptídeos/química , Animais , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/química , Bovinos , Lactoferrina/química , Espalhamento a Baixo Ângulo , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA