Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Behav Brain Res ; 472: 115173, 2024 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-39097148

RESUMO

Glutamate activates the NMDARs, significantly affecting multiple processes such as learning, memory, synaptic integration, and excitatory transmission in the central nervous system. Uncontrolled activation of NMDARs is a significant contributor to synaptic dysfunction. Having a properly functioning NMDAR and synapse is crucial for maintaining neuronal communication. In addition, the dysfunction of NMDAR and synapse function could contribute to the development of neurological disorders at the neuronal level; hence, targeting NMDARs with antagonists in the fight against neurological disorders is a promising route. Recently published results from the animal study on different kinds of brain diseases like stroke, epilepsy, tinnitus, ataxia, Alzheimer's disease, Parkinson's disease, and spinal cord injury have demonstrated promising therapeutic scopes. Several NMDA receptor antagonists, such as memantine, MK801, ketamine, ifenprodil, gacyclidine, amantadine, agmatine, etc., showed encouraging results against different brain disease mouse models. Given the unique expression of different subunits of the well-organized NMDA receptor system by neurons. It could potentially lead to the development of medications specifically targeting certain receptor subtypes. For a future researcher, conducting more targeted research and trials is crucial to fully understand and develop highly specific medications with good clinical effects and potential neuroprotective properties.


Assuntos
Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Humanos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia
3.
Trop Med Int Health ; 29(9): 833-841, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39044660

RESUMO

Globally, tuberculosis is a leading cause of infectious disease deaths. China ranks third among the 30 high-burden countries for tuberculosis and accounts for approximately 7.4% of the cases reported worldwide. Since very few studies have investigated the age difference in tuberculosis prevalence in mainland China, therefore, the preliminary characterisation of age differences in tuberculosis patients is not well understood. The data of reported sputum smear-positive, tuberculosis and sputum smear-negative cases in 340 prefectures from mainland China were extracted from the China Information System for Disease Control and Prevention from January 2009 to December 2018. Multiple statistical analysis and GIS techniques were used to investigate the temporal trend and identify the spatial distribution of sputum smear-positive, tuberculosis and sputum smear-negative cases in the study area. The results showed that the incidence of sputum smear-positive and tuberculosis has dropped to a stable level, while sputum smear-negative exhibited a rising trend. Additionally, sputum smear-positive, tuberculosis and sputum smear-negative are still highly prevalent in northwestern and southwestern regions of China. Interestingly, the young adult group (20-50 age) and elder group (>50 age) are more susceptible to being infected with tuberculosis, while lower infection levels were recorded in the juvenile group (<20 age). The present study investigated the temporal-spatial distribution of sputum smear-positive, tuberculosis and sputum smear-negative cases in mainland China before the COVID-19 pandemic breakout, which would help the government agency establish an effective mechanism of tuberculosis prevention in high-risk periods and high-risk areas in the study region.


Assuntos
Análise Espaço-Temporal , Tuberculose , Humanos , China/epidemiologia , Prevalência , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Tuberculose/epidemiologia , COVID-19/epidemiologia , Fatores Etários , Masculino , Feminino , Escarro/microbiologia , Idoso , Distribuição por Idade , Adolescente
4.
Front Pharmacol ; 15: 1403232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855752

RESUMO

Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.

5.
STAR Protoc ; 5(1): 102860, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306268

RESUMO

Cholecystokinin (CCK) is the most abundant neuropeptide that broadly regulates the physiological status of animals. Here, we present a two-color laser theta burst stimulation (L-TBS) protocol for simultaneous activation of Schaffer collateral and perforant pathway in the hippocampus of CCK Cre mice. We describe steps for heterosynaptic long-term potentiation induction by L-TBS. This technique allows for the examination of the neurotransmitter roles in synaptic modulation and facilitates the exploration of pathological mechanisms in genetic models of brain disorders in mice. For complete details on the use and execution of this protocol, please refer to Su et al.1.


Assuntos
Potenciação de Longa Duração , Opsinas , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Opsinas/metabolismo , Hipocampo/metabolismo
6.
Epilepsia ; 65(1): 218-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032046

RESUMO

OBJECTIVE: Several studies have attributed epileptic activities in temporal lobe epilepsy (TLE) to the hippocampus; however, the participation of nonhippocampal neuronal networks in the development of TLE is often neglected. Here, we sought to understand how these nonhippocampal networks are involved in the pathology that is associated with TLE disease. METHODS: A kainic acid (KA) model of temporal lobe epilepsy was induced by injecting KA into dorsal hippocampus of C57BL/6J mice. Network activation after spontaneous seizure was assessed using c-Fos expression. Protocols to induce seizure using visual or auditory stimulation were developed, and seizure onset zone (SOZ) and frequency of epileptic spikes were evaluated using electrophysiology. The hippocampus was removed to assess seizure recurrence in the absence of hippocampus. RESULTS: Our results showed that cortical and hippocampal epileptic networks are activated during spontaneous seizures. Perturbation of these networks using visual or auditory stimulation readily precipitates seizures in TLE mice; the frequency of the light-induced or noise-induced seizures depends on the induction modality adopted during the induction period. Localization of SOZ revealed the existence of cortical and hippocampal SOZ in light-induced and noise-induced seizures, and the development of local and remote epileptic spikes in TLE occurs during the early stage of the disease. Importantly, we further discovered that removal of the hippocampi does not stop seizure activities in TLE mice, revealing that seizures in TLE mice can occur independent of the hippocampus. SIGNIFICANCE: This study has shown that the network pathology that evolves in TLE is not localized to the hippocampus; rather, remote brain areas are also recruited. The occurrence of light-induced or noise-induced seizures and epileptic discharges in epileptic mice is a consequence of the activation of nonhippocampal brain areas. This work therefore demonstrates the fundamental role of nonhippocampal epileptic networks in generating epileptic activities with or without the hippocampus in TLE disease.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Camundongos Endogâmicos C57BL , Convulsões/metabolismo , Hipocampo/patologia , Encéfalo/patologia , Epilepsia/metabolismo , Modelos Animais de Doenças , Ácido Caínico/farmacologia
7.
Cell Rep ; 42(12): 113467, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979171

RESUMO

The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.


Assuntos
Região CA1 Hipocampal , Região CA2 Hipocampal , Região CA3 Hipocampal , Colecistocinina , Córtex Entorrinal , Plasticidade Neuronal , Aprendizagem Espacial , Colecistocinina/genética , Colecistocinina/metabolismo , Córtex Entorrinal/metabolismo , Região CA3 Hipocampal/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA2 Hipocampal/fisiologia , Sinapses/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Camundongos , Camundongos Knockout , Potenciação de Longa Duração
8.
iScience ; 26(4): 106542, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123227

RESUMO

Long-term potentiation (LTP), which underlies learning and memory, can be induced by high-frequency electrical stimulation (HFS or HFES) and is thought to occur at the synapses of efferent projection. Here, the contralateral connectivity in mice auditory cortex was investigated to reveal the fundamental corticocortical connection properties. After HFES, plasticity was not observed at the terminal synapses at the recording site. The optogenetic HFS at the recording site of the interhemispheric cortical projections could not induce LTP, but HFES at the recording site could induce the interhemispheric cortical LTP. Our subsequent results uncovered that it is the cholecystokinin (CCK) released from the entorhino-neocortical pathway induced by HEFS that modulates the neuroplasticity of the afferent projections, including interhemispheric auditory cortical afferents. Our study illustrates a heterosynaptic mechanism as the basis for cortical plasticity. This regulation might contribute new spots for the understanding and treatment of neurological disorders.

9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108295

RESUMO

Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.


Assuntos
Potenciação de Longa Duração , Plasticidade Neuronal , Ratos , Animais , Potenciação de Longa Duração/fisiologia , Ratos Sprague-Dawley , Plasticidade Neuronal/fisiologia , Fenômenos Eletrofisiológicos , Aprendizagem , Sinapses/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA