Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 9(1): 1759926, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32939232

RESUMO

T-cell receptor stimulation induces the convergence of multivesicular bodies towards the microtubule-organizing centre (MTOC) and the polarization of the MTOC to the immune synapse (IS). These events lead to exosome secretion at the IS. We describe here that upon IS formation centrosomal area F-actin decreased concomitantly with MTOC polarization to the IS. PKCδ-interfered T cell clones showed a sustained level of centrosomal area F-actin associated with defective MTOC polarization. We analysed the contribution of two actin cytoskeleton-regulatory proteins, FMNL1 and paxillin, to the regulation of cortical and centrosomal F-actin networks. FMNL1 ß phosphorylation and F-actin reorganization at the IS were inhibited in PKCδ-interfered clones. F-actin depletion at the central region of the IS, a requirement for MTOC polarization, was associated with FMNL1 ß phosphorylation at its C-terminal, autoregulatory region. Interfering all FMNL1 isoforms prevented MTOC polarization; nonetheless, FMNL1 ß re-expression restored MTOC polarization in a centrosomal area F-actin reorganization-independent manner. Moreover, PKCδ-interfered clones exhibited decreased paxillin phosphorylation at the MTOC, which suggests an alternative actin cytoskeleton regulatory pathway. Our results infer that PKCδ regulates MTOC polarization and secretory traffic leading to exosome secretion in a coordinated manner by means of two distinct pathways, one involving FMNL1 ß regulation and controlling F-actin reorganization at the IS, and the other, comprising paxillin phosphorylation potentially controlling centrosomal area F-actin reorganization. ABBREVIATIONS: Ab, antibody; AICD, activation-induced cell death; AIP, average intensity projection; APC, antigen-presenting cell; BCR, B-cell receptor for antigen; C, centre of mass; cent2, centrin 2; cIS, central region of the immune synapse; CMAC, CellTracker™ Blue (7-amino-4-chloromethylcoumarin); cSMAC, central supramolecular activation cluster; CTL, cytotoxic T lymphocytes; DAG, diacylglycerol; DGKα, diacylglycerol kinase α; Dia1, Diaphanous-1; dSMAC, distal supramolecular activation cluster; ECL, enhanced chemiluminescence; ESCRT, endosomal sorting complex required for traffic; F-actin, filamentous actin; Fact-low cIS, F-actin-low region at the centre of the immune synapse; FasL, Fas ligand; FMNL1, formin-like 1; fps, frames per second; GFP, green fluorescent protein; HBSS, Hank's balanced salt solution; HRP, horseradish peroxidase; ILV, intraluminal vesicles; IS, immune synapse; MFI, mean fluorescence intensity; MHC, major histocompatibility complex; MIP, maximal intensity projection; MVB, multivesicular bodies; MTOC, microtubule-organizing centre; NS, not significant; PBL, peripheral blood lymphocytes; PKC, protein kinase C; PKCδ, protein kinase C δ isoform; PLC, phospholipase C; PMA, phorbol myristate acetate; Pol. Index, polarization index; pSMAC, peripheral supramolecular activation cluster; PSF, point spread function; ROI, region of interest; SD, standard deviation; shRNA, short hairpin RNA; SEE, Staphylococcus enterotoxin E; SMAC, supramolecular activation cluster; TCR, T-cell receptor for antigen; T-helper (Th); TRANS, transmittance; WB, Western blot.

2.
Front Immunol ; 10: 851, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105694

RESUMO

Multivesicular bodies (MVB) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, ILVs are secreted as Fas ligand-bearing, pro-apoptotic exosomes following T cell receptor (TCR)-induced fusion of MVB with the plasma membrane at the immune synapse (IS). In this study we show that protein kinase C δ (PKCδ), a novel PKC isotype activated by diacylglycerol (DAG), regulates TCR-controlled MVB polarization toward the IS and exosome secretion. Concomitantly, we demonstrate that PKCδ-interfered T lymphocytes are defective in activation-induced cell death. Using a DAG sensor based on the C1 DAG-binding domain of PKCδ and a GFP-PKCδ chimera, we reveal that T lymphocyte activation enhances DAG levels at the MVB endomembranes which mediates the association of PKCδ to MVB. Spatiotemporal reorganization of F-actin at the IS is inhibited in PKCδ-interfered T lymphocytes. Therefore, we propose PKCδ as a DAG effector that regulates the actin reorganization necessary for MVB traffic and exosome secretion.


Assuntos
Actinas/metabolismo , Exossomos/metabolismo , Corpos Multivesiculares/metabolismo , Proteína Quinase C-delta/metabolismo , Linfócitos T/imunologia , Apoptose/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Proteína Quinase C-delta/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Antígenos de Linfócitos T/metabolismo
3.
J Vis Exp ; (154)2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31929507

RESUMO

The purpose of the method is to generate an immunological synapse (IS), an example of cell-to-cell conjugation formed by an antigen-presenting cell (APC) and an effector helper T lymphocyte (Th) cell, and to record the images corresponding to the first stages of the IS formation and the subsequent trafficking events (occurring both in the APC and in the Th cell). These events will eventually lead to polarized secretion at the IS. In this protocol, Jurkat cells challenged with Staphylococcus enterotoxin E (SEE)-pulsed Raji cells as a cell synapse model was used, because of the closeness of this experimental system to the biological reality (Th cell-APC synaptic conjugates). The approach presented here involves cell-to-cell conjugation, time-lapse acquisition, wide-field fluorescence microscopy (WFFM) followed by image processing (post-acquisition deconvolution). This improves the signal-to-noise ratio (SNR) of the images, enhances the temporal resolution, allows the synchronized acquisition of several fluorochromes in emerging synaptic conjugates and decreases fluorescence bleaching. In addition, the protocol is well matched with the end point cell fixation protocols (paraformaldehyde, acetone or methanol), which would allow further immunofluorescence staining and analyses. This protocol is also compatible with laser scanning confocal microscopy (LSCM) and other state-of-the-art microscopy techniques. As a main caveat, only those T cell-APC boundaries (called IS interfaces) that were at the right 90° angle to the focus plane along the Z-axis could be properly imaged and analyzed. Other experimental models exist that simplify imaging in the Z dimension and the following image analyses, but these approaches do not emulate the complex, irregular surface of an APC, and may promote non-physiological interactions in the IS. Thus, the experimental approach used here is suitable to reproduce and to confront some biological complexities occurring at the IS.


Assuntos
Sinapses Imunológicas/fisiologia , Células Apresentadoras de Antígenos/fisiologia , Comunicação Celular , Humanos , Processamento de Imagem Assistida por Computador , Células Jurkat , Microscopia Confocal , Microscopia de Fluorescência , Linfócitos T Auxiliares-Indutores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA