Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786061

RESUMO

Essential trace elements are micronutrients whose deficiency has been associated with altered fertility and/or adverse pregnancy outcomes, while surplus may be toxic. The concentrations of eight essential trace elements were measured using inductively coupled mass spectrometry (ICP-MS) and assessed with respect to clinical in vitro fertilization (IVF) outcomes in a population of 51 women undergoing IVF with intracytoplasmic sperm injection (ICSI), pre-implantation genetic screening for aneuploidy (PGT-A), and single frozen euploid embryo transfer (SET/FET). Specifically, copper (Cu), zinc (Zn), molybdenum, selenium, lithium, iron, chromium, and manganese were quantified in follicular fluid and whole blood collected the day of vaginal oocyte retrieval (VOR) and in urine collected the day of VOR and embryo transfer. We found that the whole blood Cu/Zn ratio was significantly associated with superior responses to ovarian stimulation. Conversely, the whole blood zinc and selenium concentrations were significantly associated with poor ovarian response outcomes. Higher levels of whole blood zinc and selenium, urinary selenium, lithium, and iron had significant negative associations with embryologic outcomes following IVF. Regarding clinical IVF outcomes, higher urinary molybdenum concentrations the day of VOR were associated with significantly lower odds of implantation and live birth, while higher urinary Cu/Mo ratios on the day of VOR were associated with significantly higher odds of implantation, clinical pregnancy, and live birth. Our results suggest that essential trace element levels may directly influence the IVF outcomes of Spanish patients, with selenium and molybdenum exerting negative effects and copper-related ratios exerting positive effects. Additional studies are warranted to confirm these relationships in other human populations.


Assuntos
Fertilização in vitro , Oligoelementos , Humanos , Feminino , Oligoelementos/sangue , Oligoelementos/metabolismo , Oligoelementos/urina , Fertilização in vitro/métodos , Adulto , Gravidez , Transferência de Embrião Único , Resultado da Gravidez , Injeções de Esperma Intracitoplásmicas
2.
Hum Reprod Update ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796750

RESUMO

BACKGROUND: The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE: This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS: A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES: From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS: Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER: https://osf.io/th8yf/.

3.
Am J Obstet Gynecol ; 231(2): 238.e1-238.e11, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38527601

RESUMO

BACKGROUND: Recently, the potential detrimental effect that the duration of storage time may have on vitrified samples has raised some concerns, especially when some studies found an association between cryostorage length and decreased clinical results. OBJECTIVE: This study aimed to evaluate the effects of the storage time length of day-5 vitrified blastocysts in 2 study groups: freeze-all cycles and nonelective frozen embryo transfers. STUDY DESIGN: This was a retrospective study that included 58,001 vitrified/warmed day-5 blastocysts from 2 different populations, according to the reason for frozen embryo transfer. Elective frozen embryo transfer comprised freeze-all cycles (N=16,615 blastocysts and 16,615 patients) in which only single embryo transfers and only the first frozen embryo transfer were included. The nonelective frozen embryo transfer group included 41,386 embryos from 25,571 patients where frozen embryo transfer took place using supernumerary embryos after fresh embryo transfer. All the possible frozen embryo transfers were included. Both single embryo transfer and double embryo transfers were included. Donor and autologous oocytes were used. The period covered by this study was 11 years. The blastocyst sample was clustered into deciles, which provided specific storage duration categories. The main outcome was the live birth rate, and secondary outcomes were embryo survival, miscarriage, and clinical and ongoing pregnancy rates according to storage duration. The impact of storage time was assessed by univariable analyses in both groups. The comparison was made between each decile and the last one. A multivariable logistic regression analysis was conducted, including the variables with significant association found in the univariate analysis. Student t test and chi-square tests, or an analysis of variance, were used wherever appropriate. P<.05 was considered statistically significant. RESULTS: There were statistical differences in baseline characteristics of patients included in the study groups. Storage durations ranged from ≤0.67 to ≥4.34 and from ≤1.8 to ≥34.81 months in freeze-all and nonelective frozen embryo transfer, respectively. Embryo survival did not show statistical differences across the categories of storage time in freeze-all and nonelective frozen embryo transfer groups. Statistical differences were found for the live birth rate across some, but not all, the subgroups of storage duration. The multivariable analysis showed no association between storage time and the live birth rate in both groups (nonsignificant). Blastocyst quality, body mass index, number of retrieved oocytes, endometrial preparation, male factor, and uterine factor were related to the drop in the live birth rate in the freeze-all group (P<.05). In the nonelective frozen embryo transfer group, the variables that showed significant association with the live birth rate were age at retrieval and frozen embryo transfer, type of frozen embryo transfer (single embryo transfer or double embryo transfers), number of retrieved oocytes, body mass index, endometrial preparation, origin of sperm sample, and female factor. CONCLUSION: This large study demonstrated no association between storage time and clinical outcome. Other variables, such as the patient's age, embryo quality, body mass index, and etiology, are somewhat responsible for impacting the outcome. This provides evidence for the safety of embryo vitrification, even after long storage periods. This is reassuring for both in vitro fertilization practitioners and patients undergoing frozen embryo transfer of either elective or nonelective embryos.


Assuntos
Blastocisto , Criopreservação , Transferência Embrionária , Vitrificação , Humanos , Feminino , Estudos Retrospectivos , Gravidez , Adulto , Transferência Embrionária/métodos , Fatores de Tempo , Taxa de Gravidez , Nascido Vivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA