Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 173(3): 611-617, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28139025

RESUMO

Mutations in CASK cause X-linked intellectual disability, microcephaly with pontine and cerebellar hypoplasia, optic atrophy, nystagmus, feeding difficulties, GI hypomotility, and seizures. Here we present a patient with a de novo carboxyl-terminus splice site mutation in CASK (c.2521-2A>G) and clinical features of the rare FG syndrome-4 (FGS4). We provide further characterization of genotype-phenotype correlations in CASK mutations and the presentation of nystagmus and the FGS4 phenotype. There is considerable variability in clinical phenotype among patients with a CASK mutation, even among variants predicted to have similar functionality. Our patient presented with developmental delay, nystagmus, and severe gastrointestinal and gastroesophageal complications. From a cognitive and neuropsychological perspective, language skills and IQ are within normal range, although visual-motor, motor development, behavior, and working memory were impaired. The c.2521-2A>G splice mutation leads to skipping of exon 26 and a 9 base-pair deletion associated with a cryptic splice site, leading to a 28-AA and a 3-AA in-frame deletion, respectively (p.Ala841_Lys843del and p.Ala841_Glu868del). The predominant mutant transcripts contain an aberrant guanylate kinase domain and thus are predicted to degrade CASK's ability to interact with important neuronal and ocular development proteins, including FRMD7. Upregulation of CASK as well as dysregulation among a number of interactors is also evident by RNA-seq. This is the second CASK mutation known to us as cause of FGS4. © 2017 Wiley Periodicals, Inc.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Anus Imperfurado/diagnóstico , Anus Imperfurado/genética , Constipação Intestinal/diagnóstico , Constipação Intestinal/genética , Guanilato Quinases/genética , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Hipotonia Muscular/congênito , Mutação , Nistagmo Congênito/diagnóstico , Nistagmo Congênito/genética , Sítios de Splice de RNA , Adolescente , Criança , Pré-Escolar , Fácies , Feminino , Expressão Gênica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Testes Neuropsicológicos , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Mol Genet Metab Rep ; 10: 38-44, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28070495

RESUMO

Acyl-CoA dehydrogenase 9 (ACAD9), linked to chromosome 3q21.3, is one of a family of multimeric mitochondrial flavoenzymes that catalyze the degradation of fatty acyl-CoA from the carnitine shuttle via ß-oxidation (He et al. 2007). ACAD9, specifically, is implicated in the processing of palmitoyl-CoA and long-chain unsaturated substrates, but unlike other acyl-CoA dehydrogenases (ACADs), it has a significant role in mitochondrial complex I assembly (Nouws et al. 2010 & 2014). Mutations in this enzyme typically cause mitochondrial complex I deficiency, as well as a mild defect in long chain fatty acid metabolism (Haack et al. 2010, Kirby et al. 2004, Mcfarland et al. 2003, Nouws et al. 2010 & 2014). The clinical phenotype of ACAD9 deficiency and the associated mitochondrial complex I deficiency reflect this unique duality, and symptoms are variable in severity and onset. Patients classically present with cardiac dysfunction due to hypertrophic cardiomyopathy. Other common features include Leigh syndrome, macrocephaly, and liver disease (Robinson et al. 1998). We report the case of an 11-month old girl presenting with microcephaly, dystonia, and lactic acidosis, concerning for a mitochondrial disorder, but atypical for ACAD9 deficiency. Muscle biopsy showed mitochondrial proliferation, but normal mitochondrial complex I activity. The diagnosis of ACAD9 deficiency was not initially considered, due both to these findings and to her atypical presentation. Biochemical assay for ACAD9 deficiency is not clinically available. Family trio-based whole exome sequencing (WES) identified 2 compound heterozygous mutations in the ACAD9 gene. This discovery led to optimized treatment of her mitochondrial dysfunction, and supplementation with riboflavin, resulting in clinical improvement. There have been fewer than 25 reported cases of ACAD9 deficiency in the literature to date. We review these and compare them to the unique features of our patient. ACAD9 deficiency should be considered in the differential diagnosis of patients with lactic acidosis, seizures, and other symptoms of mitochondrial disease, including those with normal mitochondrial enzyme activities. This case demonstrates the utility of WES, in conjunction with biochemical testing, for the appropriate diagnosis and treatment of disorders of energy metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA