RESUMO
The best-characterized functional motifs of the potyviral Helper-Component protease (HC-Pro) responding for aphid transmission, RNA silencing suppression, movement, symptom development, and replication are gathered in this review. The potential cellular protein targets of plant virus proteases remain largely unknown despite their multifunctionality. The HC-Pro catalytic domain, as a cysteine protease, autoproteolytically cleaves the potyviral polyproteins in the sequence motif YXVG/G and is not expected to act on host targets; however, 146 plant proteins in the Viridiplantae clade containing this motif were searched in the UniProtKB database and are discussed. On the other hand, more than 20 interactions within the entire HC-Pro structure are known. Most of these interactions with host targets (such as the 20S proteasome, methyltransferase, transcription factor eIF4E, and microtubule-associated protein HIP2) modulate the cellular environments for the benefit of virus accumulation or contribute to symptom severity (interactions with MinD, Rubisco, ferredoxin) or participate in the suppression of RNA silencing (host protein VARICOSE, calmodulin-like protein). On the contrary, the interaction of HC-Pro with triacylglycerol lipase, calreticulin, and violaxanthin deepoxidase seems to be beneficial for the host plant. The strength of these interactions between HC-Pro and the corresponding host protein vary with the plant species. Therefore, these interactions may explain the species-specific sensitivity to potyviruses.
RESUMO
Several 1,2,4-triazoles are widely used as systemic fungicides in agriculture because they inhibit fungal 14É-demethylase. However, they can also act on many non-target plant enzymes, thereby affecting phytohormonal balance, free amino acid content, and adaptation to stress. In this study, tomato plants (Solanum lycopersicum L. var. 'Cherrola') were exposed to penconazole, tebuconazole, or their combination, either by foliar spraying or soil drenching, every week, as an ecotoxicological model. All triazole-exposed plants showed a higher content (1.7-8.8 ×) of total free amino acids than the control, especially free glutamine and asparagine were increased most likely in relation to the increase in active cytokinin metabolites 15 days after the first application. Conversely, the Trp content decreased in comparison with control (0.2-0.7 ×), suggesting depletion by auxin biosynthesis. Both triazole application methods slightly affected the antioxidant system (antioxidant enzyme activity, antioxidant capacity, and phenolic content) in tomato leaves. These results indicated that the tomato plants adapted to triazoles over time. Therefore, increasing the abscisic and chlorogenic acid content in triazole-exposed plants may promote resistance to abiotic stress.
Assuntos
Antifúngicos , Solanum lycopersicum , Antioxidantes/metabolismo , Redes e Vias Metabólicas , Triazóis/toxicidadeRESUMO
Triazole fungicides can threaten plants as abiotic stressors but can also positively affect plant defense by inducing priming. Thus, plant yield is also both protected and endangered by triazoles that may influence several metabolic pathways during maturation processes, such as the biosynthesis of saccharides or secondary metabolites. Here, Solanum lycopersicum L. plants were exposed to foliar and soil applications of penconazole, tebuconazole, or their combination, and their resulting effect on tomato fruits was followed. The exposure to the equimolar mixture of both triazoles influenced the representation of free proteinogenic amino acids, especially Gln, Glu, Gly, Ile, Lys, Ser and Pro, saccharide content, and led to a significant increase in the contents of total phenolics and flavonoids as well as positive stimulation of the non-enzymatic antioxidant system. Among the identified secondary metabolites, the most abundant was naringenin, followed by chlorogenic acid in tomato peel. In turn, all triazole-treated groups showed a significantly lower content of rosmarinic acid in comparison with the control. Foliar application of penconazole affected the fruit more than other single triazole applications, showing a significant decrease in antioxidant capacity, the total content of secondary metabolites, and the activities of total membrane-bound peroxidases and ascorbate peroxidase.
RESUMO
In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.
Assuntos
Nicotiana , Nitrogênio , Humanos , Nicotiana/metabolismo , Nitrogênio/metabolismo , Caseínas/metabolismo , Proteômica , Aminoácidos/metabolismo , Plantas/metabolismo , Peptídeo Hidrolases/metabolismoRESUMO
Triazoles inhibit lanosterol 14α-demethylase and block ergosterol biosynthesis in fungal pathogens. However, they also interact with other cytochrome P450 enzymes and influence non-target metabolic pathways. Disturbingly, triazoles may interact with essential elements. The interaction of penconazole (Pen), cyproconazole (Cyp) and tebuconazole (Teb) with Zn2+ results in the formation of deprotonated ligands in their complexes or in the creation of complexes with Cl- as a counterion or doubly charged complexes. Triazoles, as well as their equimolar cocktails with Zn2+ (10-6 mol/L), decreased the activities of the non-target enzymes CYP19A1 and CYP3A4. Pen most decreased CYP19A1 activity and was best bound to its active centre to block the catalytic cycle in computational analysis. For CYP3A4, Teb was found to be the most effective inhibitor by both, activity assay and interaction with the active centre. Teb/Cyp/Zn2+ and Teb/Pen/Cyp/Zn2+ cocktails also decreased the CYP19A1 activity, which was in correlation with the formation of numerous triazole-Zn2+ complexes.
Assuntos
Citocromo P-450 CYP3A , Zinco , Citocromo P-450 CYP3A/metabolismo , Triazóis/farmacologia , Triazóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , BiotransformaçãoRESUMO
Pseudomonas aeruginosa is one of the most antibiotic multi-resistant bacteria, causing chronic pulmonary disease and leading to respiratory failure and even mortality. Thus, there has been an ever-increasing search for novel and preferably natural antimicrobial compounds. Agrimonia eupatoria L. and Origanum vulgare L. shoots are commonly used as teas or alcoholic tinctures for their human health-promoting and antibacterial properties. Here, we explored the antimicrobial effects of all plant parts, i.e., leaf, flower, stem, and root extracts, prepared in water or in 60% ethanol, against P. aeruginosa. The impact of these extracts on bacterial survival was determined using a luminescent strain of P. aeruginosa, which emits light when alive. In addition, the antimicrobial effects were compared with the antioxidant properties and content of phenolic compounds of plant extracts. Ethanolic extracts of O. vulgare roots and flowers showed the highest antimicrobial activity, followed by A. eupatoria roots. In particular, chlorogenic acid, the ethanolic extract of O. vulgare roots contained high levels of protocatechuic acid, hesperidin, shikimic acid, rutin, quercetin, and morin. The synergistic effects of these phenolic compounds and flavonoids may play a key role in the antibacterial activity of teas and tinctures.
Assuntos
Agrimonia , Anti-Infecciosos , Origanum , Humanos , Pseudomonas aeruginosa , Folhas de Planta , Antioxidantes/farmacologia , Flavonoides/farmacologia , Fenóis , Flores , Antibacterianos/farmacologia , Etanol , Extratos Vegetais/farmacologiaRESUMO
Pythium oligandrum, strain M1, is a soil oomycete successfully used as a biological control agent (BCA), protecting plants against fungal, yeast, and oomycete pathogens through mycoparasitism and elicitor-dependent plant priming. The not yet described Pythium strains, X42 and 00X48, have shown potential as BCAs given the high activity of their secreted proteases, endoglycosidases, and tryptamine. Here, Solanum lycopersicum L. cv. Micro-Tom seeds were coated with Pythium strains, and seedlings were exposed to fungal pathogens, either Alternaria brassicicola or Verticillium albo-atrum. The effects of both infection and seed-coating on plant metabolism were assessed by determining the activity and isoforms of antioxidant enzymes and endoglycosidases and the content of tryptamine, amino acids, and heat shock proteins. Dual culture competition testing and microscopy analysis confirmed mycoparasitism in all three Pythium strains. In turn, seed treatment significantly increased the total free amino acid content, changing their abundance in both non-infected and infected plants. In response to pathogens, plant Hsp70 and Hsp90 isoform levels also varied among Pythium strains, most likely as a strategy for priming the plant against infection. Overall, our results show in vitro mycoparasitism between Pythium strains and fungal pathogens and in planta involvement of heat shock proteins in priming.
RESUMO
Pythium is a genus of parasitic oomycetes which target plants and both nonvertebrate and vertebrate animals, including fish and mammalian species. However, several Pythium spp., such as P. oligandrum, function as mycoparasites of pathogenic fungi, bacteria, and oomycetes in soil and thus as advantageous biocontrol agents. This review primarily focuses on biochemical processes underlying their positive effects. For example, P. oligandrum degrades host cell wall polysaccharides using chitinases, cellulases, endo-ß-1,3-glucanases, and various exoglycosidases. Proteases from various classes also participate in the cell wall hydrolysis. All these processes can modify cell surface structures and help Pythium spp. compete for space and nutrition. Accordingly, enzyme secretion most likely plays a key role in plant root colonisation. Plant-P. oligandrum interactions, nevertheless, do not involve tissue injury but instead activate plant defence mechanisms, thereby strengthening future plant responses to pathogen attacks. Priming induces the phenylpropanoid and terpenoid pathways and thus synthesis of secondary metabolites, including lignin, for cell wall fortification and other metabolic adjustments. Such metabolic changes are mediated by elicitins, cell wall glycoproteins and oligandrins produced by P. oligandrum. As homologous proteins of ß-cinnamomin from Phytophthora cinnamomi with similar essential amino acids for sterol binding, oligandrins stand out for their structure, which they share with cell wall glycoproteins, albeit without the Ser-Thr-rich O-glycosylated domain for cell wall attachment. P. oligandrum also provides plant with tryptamine used for auxin synthesis, promoting plant growth. Overall, in addition to discussing plant metabolic and phytohormonal changes after P. oligandrum inoculation, we review data on P. oligandrum applications as researchers increasingly search for effective and environmentally friendly ways to protect crops. In this context, P. oligandrum emerges as a highly suitable biotechnological solution.
Assuntos
Phytophthora , Pythium , Hidrólise , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , TriptaminasRESUMO
Inhibitors of the shikimate pathway are widely used as herbicides, antibiotics, and anti-infectious drugs. However, the regulation of the shikimic pathway is complex, and little is known about the feedback regulation of the shikimate dehydrogenase (SDH, EC 1.1.1.25) in plants. Thus, the aim of this study was to elucidate the kinetic mechanism of SDH purified from the root of Petroselinum crispum (parsley), to determine all possible reaction products and to identify phenylpropanoid compounds that affect its activity. Our results showed that the bisubstrate reaction catalyzed by P. crispum SDH follows a sequential ordered mechanism, except for three dead-end complexes. The main and lateral reactions of SDH were monitored by mass spectrometry, thereby detecting protocatechuic acid as a byproduct. Gallic acid was formed non-enzymatically, whereas quinate was not detected. Several polyphenolic compounds inhibited SDH activity, especially tannic, caffeic and chlorogenic acids, with IC50 0.014 mM, 0.15 mM, and 0.19 mM, respectively. The number of hydroxyl groups influenced their inhibition effect on SDH, and p-coumaric, t-ferulic, sinapic, syringic and salicylic acids were less effective SDH inhibitors. Nevertheless, one branch of the phenylpropanoid pathway may affect SDH activity through feedback regulation.
Assuntos
Oxirredutases do Álcool , Petroselinum , Catálise , Ácido ChiquímicoRESUMO
Triazolic fungicides are widely applied in crop production to protect plants against fungal pathogens. However, they may influence the biochemical processes in plants and other non-target species. This paper is aimed at the effect of triazoles (namely tebuconazole, cyproconazole, and penconazole) single/mixed applications on the phenolics production in tomato (Solanum lycopersicum L.) fruit peel, amount of chlorophyll a and b in tomato leaves as well as on basic plant growth parameters. For this purpose, cherry tomatoes were planted in the pot experiment and foliarly-treated weekly, with the same total triazoles dose of 3.52 µmol per plant (in mixtures of 1.71 or 1.17 µmol of each in two or three components, respectively). The treatments increased the weight of fruits in the 1st harvest about 43%, however, this effect was not observed in the next harvest. Increased oxidative stress in the triazoles presence was observed, based on the elevated production of antioxidant phenolics in the 1st harvest. Most alarming is the decrease of the weight of thin stems and foliage and the concentration of chlorophyll a (b) in leaves in all triazoles-treated variants. The non-target impacts on plant biochemical processes (related to the phenolics or chlorophylls production and functionality) were confirmed.
Assuntos
Fungicidas Industriais , Solanum lycopersicum , Clorofila A , Frutas/química , Fungicidas Industriais/análise , Triazóis/toxicidadeRESUMO
Pythium oligandrum is a unique biological control agent. This soil oomycete not only acts as a mycoparasite, but also interacts with plant roots and stimulates plant defense response via specific elicitors. In addition, P. oligandrum can synthetize auxin precursors and stimulate plant growth. We analyzed the secretomes and biochemical properties of eleven Pythium isolates to find a novel and effective strain with advantageous features for plants. Our results showed that even closely related P. oligandrum isolates significantly differ in the content of compounds secreted into the medium, and that all strains secrete proteins, amino acids, tryptamine, phenolics, and hydrolytic enzymes capable of degrading cell walls (endo-ß-1,3-glucanase, chitinase, and cellulase), exoglycosidases (especially ß-glucosidase), proteases, and phosphatases. The most different strain was identified as a not yet described Pythium species. The changes in metabolism of Brassica napus plants grown from seeds coated with the tested Pythium spp. were characterized. Enhanced levels of jasmonates, ethylene precursor, and salicylic acid may indicate better resistance to a wide variety of pathogens. Glucosinolates, as defense compounds against insects and herbivores, were enhanced in young plants. Altogether, P. oligandrum strains varied in their life strategies, and either they could perform equally as plant growth promoters and mycoparasites or they had developed one of these strategies better.
RESUMO
Triazoles are used as antifungal agents, they mostly inhibit two enzymes: 14α-demethylase and aromatase. These enzymes are utilised also in other species and therefore the affection in non-target species in the environment is expected as well. Besides, triazoles are often being applied in a mixture and they can also interact with other substances present. This study clarifies how three selected representative triazoles (tebuconazole, penconazole and cyproconazole) interact with each other (group effect) and in mixtures (cocktail effect) with copper, essential/toxic for all organisms. Within the experiments on electrospray and collision-induced dissociations (both ESI-MS), it has been found that the fragments correspond to typical triazole metabolites. For their formation, the presence of copper ions is crucial. The inhibitory effect of Cu cocktails on aromatase enzymatic activity has been studied. The presence of Cu ions together with triazole(s) significantly increases the inhibitory effect on aromatase activity. The highest inhibitory effect (more than 60%) on aromatase activity is produced by cocktails containing penconazole and Cu ions, namely by penconazole/Cu and penconazole/tebuconazole/Cu. The reactivity of triazoles in groups is not significantly affected by the interactions among them. Additionally, the role of triazoles in copper Fenton reaction regulation has been observed and described. These changes may be attributed to the formation and stabilization of the complexes with the central Cu ion, with usually one, two or three triazolic ligands, depending on the mixture. The study demonstrates that the interaction of triazoles and Cu ions is a complex process; their impact on metabolism seems to be rather extensive and must be evaluated in the context of biochemical reactions.
Assuntos
Aromatase , Cobre , Antifúngicos , Oxirredução , TriazóisRESUMO
Resveratrol is antioxidant naturally occurring in wine grapes. It is thought to have a preventive biological activity against number of diseases. However, it has been recently shown that in the presence of metal ions, such as Cu2+, resveratrol forms oxidative radicals. Cu2+ is usually present in wine due to former usage of bluestone in vineyards. Fungicide tebuconazole has substituted bluestone and is presently one of the most widely used agrochemicals in wine industry; wine thus may contain traces of tebuconazole. Here, we study the ternary system of resveratrol, Cu2+, and tebuconazole experimentally and theoretically (using mass spectrometry, antioxidant capacity assay and quantum-chemical calculations) to model the redox behaviour of resveratrol in wine. We show that tebuconazole prevents formation of oxidative resveratrol radicals (induced by Cu2+ reaction with resveratrol) via preferential Cu2+ capture and protection of the binding sites of resveratrol. This positive effect of tebuconazole has not been observed before.