Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Prog Neurobiol ; 235: 102600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548126

RESUMO

Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.


Assuntos
Epilepsia , Doença de Parkinson , Animais , Humanos , Optogenética/métodos , Modelos Animais , Neuropatologia
2.
Free Radic Biol Med ; 217: 68-115, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508405

RESUMO

The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.


Assuntos
Técnicas Biossensoriais , Análise Espectral Raman , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Técnicas Biossensoriais/métodos , Oxirredução , Biologia
3.
Free Radic Biol Med ; 211: 145-157, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043869

RESUMO

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.


Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Peróxido de Hidrogênio/metabolismo , Mioglobina , Troponina T/metabolismo , Hipóxia Celular , Hipóxia/metabolismo , Oxirredução , Isoformas de Proteínas/metabolismo
4.
Gene Ther ; 31(3-4): 144-153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968509

RESUMO

Gene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K+ channels has been proposed as a treatment due to the outstanding ability of K+ channels to hyperpolarize neurons. However, the effects of K+ channel overexpression on cell physiology remain to be investigated. Here we report an adeno-associated virus (AAV) vector designed to reduce epileptiform activity specifically in excitatory pyramidal neurons by expressing the human Ca2+-gated K+ channel KCNN4 (KCa3.1). Electrophysiological and pharmacological experiments in acute brain slices showed that KCNN4-transduced cells exhibited a Ca2+-dependent slow afterhyperpolarization that significantly decreased the ability of KCNN4-positive neurons to generate high-frequency spike trains without affecting their lower-frequency coding ability and action potential shapes. Antiepileptic activity tests showed potent suppression of pharmacologically induced seizures in vitro at both single cell and local field potential levels with decreased spiking during ictal discharges. Taken together, our findings strongly suggest that the AAV-based expression of the KCNN4 channel in excitatory neurons is a promising therapeutic intervention as gene therapy for epilepsy.


Assuntos
Epilepsia , Neurônios , Humanos , Neurônios/metabolismo , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/farmacologia
5.
Free Radic Biol Med ; 212: 234-240, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38158053

RESUMO

Reactive oxygen species (ROS) are considered a primary source of damage during ischemic stroke. However, the precise timing of ROS production (during hypoxia or reperfusion) remains unclear. Cellular 3D spheroids are often proposed as an optimal alternative to both 2D cell cultures and animal models in modeling disease conditions. Here we report live imaging of hydrogen peroxide dynamics during the acute phase of hypoxia and reperfusion in human iPSC-derived neural spheroids, stably expressing fluorescent biosensor HyPer7. Contrary to previous reports, we did not observe a hydrogen peroxide production burst neither during hypoxia nor in course of reperfusion. Our data suggest either lack of oxidative stress during ischemia-reperfusion in spheroids or existence of different mechanisms of oxidative damage.


Assuntos
Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Estresse Oxidativo , Isquemia , Reperfusão , Hipóxia
6.
Mol Neurobiol ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995077

RESUMO

A delicate balance between quiescence and division of the radial glia-like stem cells (RGLs) ensures continuation of adult hippocampal neurogenesis (AHN) over the lifespan. Transient or persistent perturbations of this balance due to a brain pathology, drug administration, or therapy can lead to unfavorable long-term outcomes such as premature depletion of the RGLs, decreased AHN, and cognitive deficit. Memantine, a drug used for alleviating the symptoms of Alzheimer's disease, and electroconvulsive seizure (ECS), a procedure used for treating drug-resistant major depression or bipolar disorder, are known strong AHN inducers; they were earlier demonstrated to increase numbers of dividing RGLs. Here, we demonstrated that 1-month stimulation of quiescent RGLs by either memantine or ECS leads to premature exhaustion of their pool and altered AHN at later stages of life and that aging of the brain modulates the ability of the quiescent RGLs to be recruited into the cell cycle by these AHN inducers. Our findings support the aging-related divergence of functional features of quiescent RGLs and have a number of implications for the practical assessment of drugs and treatments with respect to their action on quiescent RGLs at different stages of life in animal preclinical studies.

7.
J Biophotonics ; 16(12): e202300228, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37679905

RESUMO

We demonstrate label-free imaging of genetically induced hepatocellular carcinoma (HCC) in a murine model provided by two- and three-photon fluorescence microscopy of endogenous fluorophores excited at the central wavelengths of 790, 980 and 1250 nm and reinforced by second and third harmonic generation microscopy. We show, that autofluorescence imaging presents abundant information about cell arrangement and lipid accumulation in hepatocytes and hepatic stellate cells (HSCs), harmonics generation microscopy provides a versatile tool for fibrogenesis and steatosis study. Multimodal images may be performed by a single ultrafast laser source at 1250 nm falling in tissue transparency window. Various grades of HCC are examined revealing fibrosis, steatosis, liver cell dysplasia, activation of HSCs and hepatocyte necrosis, that shows a great ability of multimodal label-free microscopy to intravital visualization of liver pathology development.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Hepatócitos , Células Estreladas do Fígado/patologia , Microscopia/métodos
8.
Free Radic Biol Med ; 208: 153-164, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543166

RESUMO

Diabetes is one of the significant risk factors for ischemic stroke. Hyperglycemia exacerbates the pathogenesis of stroke, leading to more extensive cerebral damage and, as a result, to more severe consequences. However, the mechanism whereby the hyperglycemic status in diabetes affects biochemical processes during the development of ischemic injury is still not fully understood. In the present work, we record for the first time the real-time dynamics of H2O2 in the matrix of neuronal mitochondria in vitro in culture and in vivo in the brain tissues of rats during development of ischemic stroke under conditions of hyperglycemia and normal glucose levels. To accomplish this, we used a highly sensitive HyPer7 biosensor and a fiber-optic interface technology. We demonstrated that a high glycemic status does not affect the generation of H2O2 in the tissues of the ischemic core, while significantly exacerbating the consequences of pathogenesis. For the first time using Raman microspectroscopy approach, we have shown how a sharp increase in the blood glucose level increases the relative amount of reduced cytochromes in the mitochondrial electron transport chain in neurons under normal conditions in awake mice.


Assuntos
Isquemia Encefálica , Diabetes Mellitus , Hiperglicemia , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Peróxido de Hidrogênio , Acidente Vascular Cerebral/patologia , Hiperglicemia/patologia , Isquemia Encefálica/patologia
9.
Biomedicines ; 11(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509423

RESUMO

Reactive oxygen species (ROS) are highly reactive products of the cell metabolism derived from oxygen molecules, and their abundant level is observed in many diseases, particularly tumors, such as hepatocellular carcinoma (HCC). In vivo imaging of ROS is a necessary tool in preclinical research to evaluate the efficacy of drugs with antioxidant activity and for diagnosis and monitoring of diseases. However, most known sensors cannot be used for in vivo experiments due to low stability in the blood and rapid elimination from the body. In this work, we focused on the development of an effective delivery system of fluorescent probes for intravital ROS visualization using the HCC model. We have synthesized various lipid nanoparticles (LNPs) loaded with ROS-inducible hydrocyanine pro-fluorescent dye or plasmid DNA (pDNA) with genetically encoded protein sensors of hydrogen peroxide (HyPer7). LNP with an average diameter of 110 ± 12 nm, characterized by increased stability and pDNA loading efficiency (64 ± 7%), demonstrated preferable accumulation in the liver compared to 170 nm LNPs. We evaluated cytotoxicity and demonstrated the efficacy of hydrocyanine-5 and HyPer7 formulated in LNP for ROS visualization in mouse hepatocytes (AML12 cells) and in the mouse xenograft model of HCC. Our results demonstrate that obtained LNP could be a valuable tool in preclinical research for visualization ROS in liver diseases.

10.
Data Brief ; 48: 109170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37168593

RESUMO

Ferroptosis is a type of programmed cell death distinct from apoptosis and necroptosis that plays an essential role in pathophysiological conditions such as neurodegenerative diseases and tumorigenesis. Massive lipid oxidation in an iron-dependent manner is a hallmark of ferroptosis.This modality of cell death is also characterized by perturbation of several metabolic pathways, predominantly fatty acid metabolism, thiol metabolism, iron homeostasis and the mevalonate pathway. We aimed to acquire data from different timepoints of ferroptotic death in order to get information about the primary and delayed phases of the ferroptotic response. For this purpose, we used model Pfa1 cells, which are 4-OH-TAM-inducible Gpx4-/- mouse immortalized fibroblasts [1]. GPX4 is one of the main intracellular ferroptosis regulators and inhibiting it is a classic approach to induce ferroptosis. Measuring protein fold changes at different ferroptotic stages and in nontreated Pfa1 cells could give useful information on the activation of genes involved in ferroptosis and non-genomic protein regulation during ferroptotic progression. Bottom-up proteomic data were acquired from samples obtained 24 and 48 hours after genetic induction of ferroptosis. Chromato-mass spectra were registered in DDA mode and are suitable for further label-free quantification. These data might be a valuable proteome basis for further investigation of ferroptosis and complement other available omics.

11.
Nat Commun ; 14(1): 2123, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055412

RESUMO

Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Metabolismo Energético , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
12.
Redox Biol ; 60: 102604, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36640726

RESUMO

Oxidative stress, a state of disrupted redox signaling, reactive oxygen species (ROS) overproduction, and oxidative cell damage, accompanies numerous brain pathologies, including aging-related dementia and Alzheimer's disease, the most common neurodegenerative disorder of the elderly population. However, a causative role of neuronal oxidative stress in the development of aging-related cognitive decline and neurodegeneration remains elusive because of the lack of approaches for modeling isolated oxidative injury in the brain. Here, we present a chemogenetic approach based on the yeast flavoprotein d-amino acid oxidase (DAAO) for the generation of intraneuronal hydrogen peroxide (H2O2). To validate this chemogenetic tool, DAAO and HyPer7, an ultrasensitive genetically encoded H2O2 biosensor, were targeted to neurons. Changes in the fluorescence of HyPer7 upon treatment of neurons expressing DAAO with d-norvaline (D-Nva), a DAAO substrate, confirmed chemogenetically induced production of intraneuornal H2O2. Then, using the verified chemogenetic tool, we emulated isolated intraneuronal oxidative stress in acute brain slices and, using electrophysiological recordings, revealed that it does not alter basal synaptic transmission and the probability of neurotransmitter release from presynaptic terminals but reduces long-term potentiation (LTP). Moreover, treating neurons expressing DAAO with D-Nva via the patch pipette also decreases LTP. This observation indicates that isolated oxidative stress affects synaptic plasticity at single cell level. Our results broaden the toolset for studying normal redox regulation in the brain and elucidating the role of oxidative stress to the pathogenesis of cognitive aging and the early stages of aging-related neurodegenerative diseases. The proposed approach is useful for identification of early markers of neuronal oxidative stress and may be used in screens of potential antioxidants effective against neuronal oxidative injury.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Humanos , Idoso , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Antioxidantes/farmacologia , Plasticidade Neuronal/fisiologia
13.
14.
J Biophotonics ; 15(10): e202200050, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654757

RESUMO

We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real-time fiber-optic recording of stroke-induced hydrogen peroxide and pH transients in ischemia-affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time-resolved study of oxidative-stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength-multiplex forward-propagation channel for a spatially localized, dual-pathway excitation of genetically encoded fluorescence-protein sensors along with a back-propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber-probe-collected fluorescence return provides means for a high-fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real-time detection of stroke-induced transients and significantly reducing measurement uncertainties in in vivo acute-stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Tecnologia de Fibra Óptica/métodos , Peróxido de Hidrogênio , Optogenética , Ratos
15.
EMBO J ; 41(7): e109169, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146782

RESUMO

Hydrogen peroxide (H2 O2 ) has key signaling roles at physiological levels, while causing molecular damage at elevated concentrations. H2 O2 production by mitochondria is implicated in regulating processes inside and outside these organelles. However, it remains unclear whether and how mitochondria in intact cells release H2 O2 . Here, we employed a genetically encoded high-affinity H2 O2 sensor, HyPer7, in mammalian tissue culture cells to investigate different modes of mitochondrial H2 O2 release. We found substantial heterogeneity of HyPer7 dynamics between individual cells. We further observed mitochondria-released H2 O2 directly at the surface of the organelle and in the bulk cytosol, but not in the nucleus or at the plasma membrane, pointing to steep gradients emanating from mitochondria. Gradient formation is controlled by cytosolic peroxiredoxins, which act redundantly and with a substantial reserve capacity. Dynamic adaptation of cytosolic thioredoxin reductase levels during metabolic changes results in improved H2 O2 handling and explains previously observed differences between cell types. Our data suggest that H2 O2 -mediated signaling is initiated only in close proximity to mitochondria and under specific metabolic conditions.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Animais , Citosol/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Mamíferos , Mitocôndrias/metabolismo , Transdução de Sinais
16.
Nat Rev Mol Cell Biol ; 23(7): 499-515, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35190722

RESUMO

'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.


Assuntos
Peróxido de Hidrogênio , Oxidantes , Antioxidantes/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Commun ; 13(1): 171, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013284

RESUMO

The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli. We show that Hypocrates is ratiometric, reversible, and responds to its analytes in the 106 M-1s-1 range. Solving the Hypocrates X-ray structure provided insights into its sensing mechanism, allowing determination of the spatial organization in this circularly permuted fluorescent protein-based redox probe. We exemplify its applicability by imaging hypohalous stress in bacteria phagocytosed by primary neutrophils. Finally, we demonstrate that Hypocrates can be utilized in combination with HyPerRed for the simultaneous visualization of (pseudo)hypohalous acids and hydrogen peroxide dynamics in a zebrafish tail fin injury model.


Assuntos
Nadadeiras de Animais/diagnóstico por imagem , Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Proteínas Luminescentes/genética , Nadadeiras de Animais/lesões , Nadadeiras de Animais/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/instrumentação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Peróxido de Hidrogênio/química , Ácido Hipocloroso/síntese química , Ácido Hipocloroso/metabolismo , Proteínas Luminescentes/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Oxirredução , Fagocitose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra
18.
FEBS J ; 289(18): 5382-5395, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173331

RESUMO

Cell metabolism heavily relies on the redox reactions that inevitably generate reactive oxygen species (ROS). It is now well established that ROS fluctuations near basal levels coordinate numerous physiological processes in living organisms, thus exhibiting regulatory functions. Hydrogen peroxide, the most long-lived ROS, is a key contributor to ROS-dependent signal transduction in the cell. H2 O2 is known to impact various targets in the cell; therefore, the question of how H2 O2 modulates physiological processes in a highly specific manner is central in redox biology. To resolve this question, novel genetic tools have recently been created for detecting H2 O2 and emulating its generation in living organisms with unmatched spatiotemporal resolution. Here, we review H2 O2 -sensitive genetically encoded fluorescent sensors and opto- and chemogenetic tools for controlled H2 O2 generation.


Assuntos
Peróxido de Hidrogênio , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxirredução , Espécies Reativas de Oxigênio , Transdução de Sinais/genética
19.
Histochem Cell Biol ; 157(2): 239-250, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757474

RESUMO

Detection of synthetic thymidine analogues after their incorporation into replicating DNA during the S-phase of the cell cycle is a widely exploited methodology for evaluating proliferative activity, tracing dividing and post-mitotic cells, and determining cell-cycle parameters both in vitro and in vivo. To produce valid quantitative readouts for in vivo experiments with single intraperitoneal delivery of a particular nucleotide, it is necessary to determine the time interval during which a synthetic thymidine analogue can be incorporated into newly synthesized DNA, and the time by which the nucleotide is cleared from the blood serum. To date, using a variety of methods, only the bioavailability time of tritiated thymidine and 5-bromo-2'-deoxyuridine (BrdU) have been evaluated. Recent advances in double- and triple-S-phase labeling using 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU), and 5-ethynyl-2'-deoxyuridine (EdU) have raised the question of the bioavailability time of these modified nucleotides. Here, we examined their labeling kinetics in vivo and evaluated label clearance from blood serum after single intraperitoneal delivery to mice at doses equimolar to the saturation dose of BrdU (150 mg/kg). We found that under these conditions, all the examined thymidine analogues exhibit similar labeling kinetics and clearance rates from the blood serum. Our results indicate that all thymidine analogues delivered at the indicated doses have similar bioavailability times (approximately 1 h). Our findings are significant for the practical use of multiple S-phase labeling with any combinations of BrdU, IdU, CldU, and EdU and for obtaining valid labeling readouts.


Assuntos
Bromodesoxiuridina/metabolismo , Desoxiuridina/análogos & derivados , Glibureto/análogos & derivados , Timidina/metabolismo , Animais , Disponibilidade Biológica , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/sangue , Giro Denteado/metabolismo , Desoxiuridina/administração & dosagem , Desoxiuridina/sangue , Desoxiuridina/metabolismo , Glibureto/administração & dosagem , Glibureto/sangue , Glibureto/metabolismo , Injeções Intraperitoneais , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Timidina/administração & dosagem , Timidina/análogos & derivados
20.
Redox Biol ; 48: 102178, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773835

RESUMO

Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA