Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Phys Med Biol ; 69(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38862000

RESUMO

Objective.In proton pencil beam scanning (PBS) continuous delivery, the beam is continuously delivered without interruptions between spots. For synchrotron-based systems, the extracted beam current exhibits a spill structure, and recent publications on beam current measurements have demonstrated significant fluctuations around the nominal values. These fluctuations potentially lead to dose deviations from those calculated assuming a stable beam current. This study investigated the dosimetric implications of such beam current fluctuations during proton PBS continuous scanning.Approach.Using representative clinical proton PBS plans, we performed simulations to mimic a worst-case clinical delivery environment with beam current varies from 50% to 250% of the nominal values. The simulations used the beam delivery parameters optimized for the best beam delivery efficiency of the upcoming particle therapy system at Mayo Clinic Florida. We reconstructed the simulated delivered dose distributions and evaluated the dosimetric impact of beam current fluctuations.Main results.Despite significant beam current fluctuations resulting in deviations at each spot level, the overall dose distributions were nearly identical to those assuming a stable beam current. The 1 mm/1% Gamma passing rate was 100% for all plans. Less than 0.2% root mean square error was observed in the planning target volume dose-volume histogram. Minimal differences were observed in all dosimetric evaluation metrics.Significance.Our findings demonstrate that with our beam delivery system and clinical planning practice, while significant beam current fluctuations may result in large local move monitor unit deviations at each spot level, the overall impact on the dose distribution is minimal.


Assuntos
Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Síncrotrons , Terapia com Prótons/métodos , Terapia com Prótons/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo
2.
Med Dosim ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824052

RESUMO

Mayo Clinic Florida will initially open with the capability to treat with a single horizontal port for carbon ion therapy. Carbon ion therapy is traditionally done using a multi fixed port treatment approach. In this study, for nine treatment sites, clinically approved treatment plan of Osaka Heavy Ion Therapy Center was compared to a treatment plan using only a horizontal port. The treatment sites evaluated in this study were prostate cancer, pancreatic cancer, cervical cancer, recurrent rectal cancer, liver cancer, head and neck cancer, bone cancer (sarcoma and chordoma), and lung cancer. As expected, the prostate plans are identical and are only included for completeness. The DVH results for the pancreas and cervical cancer were very similar. The results for recurrent rectal, head and neck, sarcoma, chordoma, and lung cancer indicate that a single horizontal port with couch roll and yaw will accommodate certain medial targets but will be challenging to treat for laterally located targets without creative mitigations.

3.
Cancers (Basel) ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893068

RESUMO

Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies. In this paper, we discuss the clinical significance of RBE within treatment volumes and adjacent serial organs at risk in the management of head and neck and skull-base tumors. We review proton RBE uncertainties and its modeling and explore clinical outcomes. Additionally, we highlight technological advancements and innovations in plan optimization and treatment delivery, including linear energy transfer/RBE optimizations and the development of spot-scanning proton arc therapy. These advancements show promise in harnessing the full capabilities of proton therapy from an academic standpoint, further technological innovations and clinical outcome studies, however, are needed for their integration into routine clinical practice.

4.
Med Phys ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922975

RESUMO

BACKGROUND: Intensity Modulated Proton Therapy (IMPT) is a sophisticated radiation treatment allowing for precise dose distributions. However, conventional spot selection strategies in IMPT face challenges, particularly with minimum monitor unit (MU) constraints, affecting planning quality and efficiency. PURPOSE: This study introduces an innovative Two-Stage Mixed Integer Linear Programming (MILP) method to optimize spot intensity in IMPT with Lower Bound (LB) constraints. This method seeks to improve treatment planning efficiency and precision, overcoming limitations of existing strategies. METHODS: Our approach evaluates prevalent IMPT spot selection strategies, identifying their limitations, especially concerning MU constraints. We integrated LB constraints into a MILP framework, using a novel three-phase strategy for spot pool selection, to enhance performance over traditional heuristic methods and L1 + L∞ strategies. The method's efficacy was tested in eight study cases, using Dose-Volume Histograms (DVHs), spot selection efficiency, and computation time analysis for benchmarking against established methods. RESULTS: The proposed method showed superior performance in DVH quality, adhering to LB constraints while maintaining high-quality treatment plans. It outperformed existing techniques in spot selection, reducing unnecessary spots and balancing precision with efficiency. Cases studies confirmed the method's effectiveness in producing clinically feasible plans with enhanced dose distributions and reduced hotspots, especially in cases with elevated LB constraints. CONCLUSIONS: Our Two-Stage MILP strategy signifies a significant advancement in IMPT treatment planning. By incorporating LB constraints directly into the optimization process, it achieves superior plan quality and deliverability compared to current methods. This approach is particularly advantageous in clinical settings requiring minimum spot number and high MU LB constraints, offering the potential for improved patient outcomes through more precise and efficient radiation therapy plans.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38707713

RESUMO

Carbon-ion radiation therapy (CIRT) is an up-and-coming modality for cancer treatment. Implementation of CIRT requires collaboration among specialists like radiation oncologists, medical physicists, and other healthcare professionals. Effective communication among team members is necessary for the success of CIRT. However, the current workflows involving data management, treatment planning, scheduling, and quality assurance (QA) can be susceptible to errors, leading to delays and decreased efficiency. With the aim of addressing these challenges, a team of medical physicists developed an in-house workflow management software using FileMaker Pro. This tool has streamlined the workflow and improved the efficiency and quality of patient care.

6.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669190

RESUMO

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Assuntos
Elétrons , Órgãos em Risco , Impressão Tridimensional , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Pele , Humanos , Elétrons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Pele/efeitos da radiação , Imagens de Fantasmas , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação
7.
J Appl Clin Med Phys ; : e14342, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590112

RESUMO

BACKGROUND: Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research. METHODS: We systematically investigated the impact of proton machine operating parameters on the effectiveness of layer rescanning in mitigating interplay effect during lung SBRT treatment, using the CIRS phantom. Focused on the Hitachi synchrotron particle therapy system, we explored machine operating parameters from our institution's current (2015) and upcoming systems (2025A and 2025B). Accumulated dynamic 4D dose were reconstructed to assess the interplay effect and layer rescanning effectiveness. RESULTS: Achieving target coverage and dose homogeneity within 2% deviation required 6, 6, and 20 times layer rescanning for the 2015, 2025A, and 2025B machine parameters, respectively. Beyond this point, further increasing the number of layer rescanning did not further improve the dose distribution. BDTs without rescanning were 50.4, 24.4, and 11.4 s for 2015, 2025A, and 2025B, respectively. However, after incorporating proper number of layer rescanning (six for 2015 and 2025A, 20 for 2025B), BDTs increased to 67.0, 39.6, and 42.3 s for 2015, 2025A, and 2025B machine parameters. Our data also demonstrated the potential problem of false negative and false positive if the randomness of the respiratory phase at which the beam is initiated is not considered in the evaluation of interplay effect. CONCLUSION: The effectiveness of layer rescanning for mitigating interplay effect is affected by machine operating parameters. Therefore, past clinical experiences may not be applicable to modern machines.

8.
Phys Imaging Radiat Oncol ; 29: 100564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38544867

RESUMO

Background and Purpose: The effort to translate clinical findings across institutions employing different relative biological effectiveness (RBE) models of ion radiotherapy has rapidly grown in recent years. Nevertheless, even for a chosen RBE model, different implementations exist. These approaches might consider or disregard the dose-dependence of the RBE and the radial variation of the radiation quality around the beam axis. This study investigated the theoretical impact of disregarding these effects during the RBE calculations. Materials and Methods: Microdosimetric simulations were carried out using the Monte Carlo code PHITS along the spread out Bragg peaks of 1H, 4He, 12C, 16O, and 20Ne ions in a water phantom. The RBE was computed using different implementations of the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM) and the modified MKM, considering or not the radial variation of the radiation quality in the penumbra of the ion beams and the dose-dependence of the RBE. Results: For an OAR located 5 mm laterally from the target volume, disregarding the radial variation of the radiation quality or the dose-dependence of the RBE could result in an overestimation of the RBE-weighted dose up to a factor of âˆ¼ 3.5 or âˆ¼ 1.7, respectively. Conclusions: The RBE-weighted dose to OARs close to the tumor volume was substantially impacted by the approach employed for the RBE calculations, even when using the same RBE model and cell line. Therefore, care should be taken in considering these differences while translating clinical findings between institutions with dissimilar approaches.

9.
Front Oncol ; 14: 1295251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487718

RESUMO

Introduction: Manual review of organ at risk (OAR) contours is crucial for creating safe radiotherapy plans but can be time-consuming and error prone. Statistical and deep learning models show the potential to automatically detect improper contours by identifying outliers using large sets of acceptable data (knowledge-based outlier detection) and may be able to assist human reviewers during review of OAR contours. Methods: This study developed an automated knowledge-based outlier detection method and assessed its ability to detect erroneous contours for all common head and neck (HN) OAR types used clinically at our institution. We utilized 490 accurate CT-based HN structure sets from unique patients, each with forty-two HN OAR contours when anatomically present. The structure sets were distributed as 80% for training, 10% for validation, and 10% for testing. In addition, 190 and 37 simulated contours containing errors were added to the validation and test sets, respectively. Single-contour features, including location, shape, orientation, volume, and CT number, were used to train three single-contour feature models (z-score, Mahalanobis distance [MD], and autoencoder [AE]). Additionally, a novel contour-to-contour relationship (CCR) model was trained using the minimum distance and volumetric overlap between pairs of OAR contours to quantify overlap and separation. Inferences from single-contour feature models were combined with the CCR model inferences and inferences evaluating the number of disconnected parts in a single contour and then compared. Results: In the test dataset, before combination with the CCR model, the area under the curve values were 0.922/0.939/0.939 for the z-score, MD, and AE models respectively for all contours. After combination with CCR model inferences, the z-score, MD, and AE had sensitivities of 0.838/0.892/0.865, specificities of 0.922/0.907/0.887, and balanced accuracies (BA) of 0.880/0.900/0.876 respectively. In the validation dataset, with similar overall performance and no signs of overfitting, model performance for individual OAR types was assessed. The combined AE model demonstrated minimum, median, and maximum BAs of 0.729, 0.908, and 0.980 across OAR types. Discussion: Our novel knowledge-based method combines models utilizing single-contour and CCR features to effectively detect erroneous OAR contours across a comprehensive set of 42 clinically used OAR types for HN radiotherapy.

10.
Radiat Res ; 201(6): 604-616, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376467

RESUMO

This study offers a review of published data on DNA double strand break (DSB) repair kinetics after exposure to ionizing radiation. By compiling a database, which currently includes 285 DNA DSB repair experiments utilizing both photons and ions, we investigate the impact of distinct experimental parameters on the kinetics of DNA DSB repair. Methodological differences and inconsistencies in reporting make the comparison of data generated by different research groups challenging. Nevertheless, by implementing filtering criteria, we can compare repair kinetics obtained with normal and tumor cells derived from human or animal tissues, as well as cells exposed to photons or ions ranging from hydrogen to iron ions. In addition, several repair curves of repair deficient cell lines were included. The study aims to provide researchers with a comprehensive overview of experimental factors that may confound results and emphasize the importance of precise reporting of experimental parameters. Moreover, we identify gaps in the literature that require attention in future studies, aiming to address clinically relevant questions related to radiotherapy. The database can be freely accessed at: https://github.com/weradstake/DRDNA.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fótons , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Reparo do DNA/efeitos da radiação , Cinética , Animais , Íons
11.
Int J Radiat Oncol Biol Phys ; 119(3): 924-935, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310485

RESUMO

PURPOSE: Proton relative biological effectiveness (RBE) is a dynamic variable influenced by factors like linear energy transfer (LET), dose, tissue type, and biological endpoint. The standard fixed proton RBE of 1.1, currently used in clinical planning, may not accurately represent the true biological effects of proton therapy (PT) in all cases. This uncertainty can contribute to radiation-induced normal tissue toxicity in patients. In late-responding tissues such as the spinal cord, toxicity can cause devastating complications. This study investigated spinal cord tolerance in mice subjected to proton irradiation and characterized the influence of fractionation on proton- induced myelopathy at entrance (ENT) and Bragg peak (BP) positions. METHODS AND MATERIALS: Cervical spinal cords of 8-week-old C57BL/6J female mice were irradiated with single- or multi-fractions (18x) using lateral opposed radiation fields at 1 of 2 positions along the Bragg curve: ENT (dose-mean LET = 1.2 keV/µm) and BP (LET = 6.9 keV/µm). Mice were monitored over 1 year for changes in weight, mobility, and general health, with radiation-induced myelopathy as the primary biological endpoint. Calculations of the RBE of the ENT and BP curve (RBEENT/BP) were performed. RESULTS: Single-fraction RBEENT/BP for 50% effect probability (tolerance dose (TD50), grade II paresis, determined using log-logistic model fitting) was 1.10 ± 0.06 (95% CI) and for multifraction treatments it was 1.19 ± 0.05 (95% CI). Higher incidence and faster onset of paralysis were seen in mice treated at the BP compared with ENT. CONCLUSIONS: The findings challenge the universally fixed RBE value in PT, indicating up to a 25% mouse spinal cord RBEENT/BP variation for multifraction treatments. These results highlight the importance of considering fractionation in determining RBE for PT. Robust characterization of proton-induced toxicity, aided by in vivo models, is paramount for refining clinical decision-making and mitigating potential patient side effects.


Assuntos
Fracionamento da Dose de Radiação , Transferência Linear de Energia , Camundongos Endogâmicos C57BL , Terapia com Prótons , Tolerância a Radiação , Eficiência Biológica Relativa , Medula Espinal , Animais , Feminino , Medula Espinal/efeitos da radiação , Camundongos , Terapia com Prótons/efeitos adversos , Prótons/efeitos adversos , Relação Dose-Resposta à Radiação
12.
Med Phys ; 51(3): 2239-2250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37877590

RESUMO

BACKGROUND: Using the pencil beam raster scanning method employed at most carbon beam treatment facilities, spots can be moved without interrupting the beam, allowing for the delivery of a dose between spots (move dose). This technique is also known as Dose-Driven-Continuous-Scanning (DDCS). To minimize its impact on HIMAK patient dosimetry, there's an upper limit to the move dose. Spots within a layer are grouped into sets, or "break points," allowing continuous irradiation. The beam is turned off when transitioning between sets or at the end of a treatment layer or spill. The control system beam-off is accomplished by turning off the RF Knockout (RFKO) extraction and after a brief delay the High Speed Steering Magnet (HSST) redirects the beam transport away from isocenter to a beam dump. PURPOSE: The influence of the move dose and beam on/off control on the dose distribution and irradiation time was evaluated by measurements never before reported and modelled for Hitachi Carbon DDCS. METHOD: We conducted fixed-point and scanning irradiation experiments at three different energies, both with and without breakpoints. For fixed-point irradiation, we utilized a 2D array detector and an oscilloscope to measure beam intensity over time. The oscilloscope data enabled us to confirm beam-off and beam-on timing due to breakpoints, as well as the relative timing of the RFKO signal, HSST signal, and dose monitor (DM) signals. From these measurements, we analyzed and modelled the temporal characteristics of the beam intensity. We also developed a model for the spot shape and amplitude at isocenter occurring after the beam-off signal which we called flap dose and its dependence on beam intensity. In the case of scanning irradiation, we measured move doses using the 2D array detector and compared these measurements with our model. RESULT: We observed that the most dominant time variation of the beam intensity was at 1 kHz and its harmonic frequencies. Our findings revealed that the derived beam intensity cannot reach the preset beam intensity when each spot belongs to different breakpoints. The beam-off time due to breakpoints was approximately 100 ms, while the beam rise time and fall time (tdecay ) were remarkably fast, about 10 ms and 0.2 ms, respectively. Moreover, we measured the time lag (tdelay ) of approximately 0.2 ms between the RFKO and HSST signals. Since tdelay ≈ tdecay at HIMAK then the HSST is activated after the residual beam intensity, resulting in essentially zero flap dose at isocenter from the HSST. Our measurements of the move dose demonstrated excellent agreement with the modelled move dose. CONCLUSION: We conducted the first move dose measurement for a Hitachi Carbon synchrotron, and our findings, considering beam on/off control details, indicate that Hitachi's carbon synchrotron provides a stable beam at HIMAK. Our work suggests that measuring both move dose and flap dose should be part of the commissioning process and possibly using our model in the Treatment Planning System (TPS) for new facilities with treatment delivery control systems with higher beam intensities and faster beam-off control.


Assuntos
Íons Pesados , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Íons , Planejamento da Radioterapia Assistida por Computador/métodos , Carbono/uso terapêutico , Dosagem Radioterapêutica
13.
Phys Med Biol ; 68(18)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133518

RESUMO

Objectives. (1) To examine to what extent the cell- and exposure- specific information neglected in the phenomenological proton relative biological effectiveness (RBE) models could influence the computed RBE in proton therapy. (2) To explore similarities and differences in the formalism and the results between the linear energy transfer (LET)-based phenomenological proton RBE models and the microdosimetry-based Mayo Clinic Florida microdosimetric kinetic model (MCF MKM). (3) To investigate how the relationship between the RBE and the dose-mean proton LET is affected by the proton energy spectrum and the secondary fragments.Approach. We systematically compared six selected phenomenological proton RBE models with the MCF MKM in track-segment simulations, monoenergetic proton beams in a water phantom, and two spread-out Bragg peaks. A representative comparison within vitrodata for human glioblastoma cells (U87 cell line) is also included.Main results. Marked differences were observed between the results of the phenomenological proton RBE models, as reported in previous studies. The dispersion of these models' results was found to be comparable to the spread in the MCF MKM results obtained by varying the cell-specific parameters neglected in the phenomenological models. Furthermore, while single cell-specific correlation between RBE and the dose-mean proton LET seems reasonable above 2 keVµm-1, caution is necessary at lower LET values due to the relevant contribution of secondary fragments. The comparison within vitrodata demonstrates comparable agreement between the MCF MKM predictions and the results of the phenomenological models.Significance. The study highlights the importance of considering cell-specific characteristics and detailed radiation quality information for accurate RBE calculations in proton therapy. Furthermore, these results provide confidence in the use of the MCF MKM for clonogenic survival RBE calculations in proton therapy, offering a more mechanistic approach compared to phenomenological models.


Assuntos
Terapia com Prótons , Prótons , Humanos , Sobrevivência Celular , Terapia com Prótons/métodos , Eficiência Biológica Relativa
14.
Radiat Prot Dosimetry ; 199(15-16): 1953-1957, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819314

RESUMO

The Mayo Clinic Florida microdosimetric kinetic model (MCF MKM) is a recently developed clonogenic survival model. Since the MCF MKM relies on novel strategies to a priori determine the cell-specific model parameters, the only experiment-specific input values are the α and ß terms of the linear-quadratic model (LQM) of clonogenic survival for the reference photon exposure. Because the two LQM terms are anti-correlated, the fitting process of the reference photon survival curve was found to significantly influence the MCF MKM calculations. This article reports this effect for two clinically relevant cell lines (human brain glioblastoma A-172, human healthy foreskin fibroblasts AG01522) and ions (1H and 12C ions).


Assuntos
Fótons , Humanos , Florida , Linhagem Celular , Íons , Modelos Lineares , Eficiência Biológica Relativa , Sobrevivência Celular
15.
Phys Med Biol ; 68(22)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37857314

RESUMO

Introduction. Dispersion in an accelerator quantifies the deviation of the proton trajectory when there is a momentum deviation. We present for the first time a safe method of measuring dispersion in the clinic, using a scintillator detector and the momentum deviations within a spill. This is an important accelerator quantity as we found that this is the reason behind the large dose fluctuation in our absolute dosimetry measurement.Methods. Dispersions are measured for nine energies in a Hitachi ProBeat system at three locations (isocenter and at two profile monitors) and at two gantry angles (0 and 90 degrees) by first measuring the spot position and momentum drift within a spill. The spot position drift is measured by the XRV-4000 at the isocenter, and by the two profile monitors located at 0.57 and 2.27 m from the isocenter. The momentum drift is calculated from the intra-spill range drift which is measured using the Ranger accessory. The dispersion at isocenter and its gradient are calculated using the weighted least square regression on the measured dispersions at the three locations. A constraint is formulated on the dispersion and its gradient to ensure minimal intra-spill spot position deviation around the isocenter.Results. The measured intra-spill range and spot positional drift at isocenter are less than0.25mmand0.7mmrespectively. The momentum spread calculated from the range drift are less than 0.08%. The dispersion at the isocenter ranged from0.50to4.30mand the zero-crossing happens upstream of isocenter for all energies. 2 of the 9 energies (168.0 and 187.5 MeV) violated the constraint and has an intra-spill spot positional deviation greater than1.0within5cmfrom the isocenter.Conclusion. This measurement is recommended as part of commissioning and annual quality assurance for accelerator monitoring and to ensure intra-spill spot deviations remain low.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Radiometria , Prótons , Movimento (Física)
16.
Med Phys ; 50(10): 6490-6501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690458

RESUMO

BACKGROUND: Kilo-voltage cone-beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely-used Feldkamp-Davis-Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary-based methods, and prior information-based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. PURPOSE: One of the primary challenges in IR-based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high-resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. METHODS: The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp-Davis-Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. RESULTS: We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. CONCLUSION: The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high-definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.

17.
Phys Med Biol ; 68(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703907

RESUMO

Objective. To investigate the impact of scan path optimization on the dose accuracy and beam delivery time (BDT) of proton pencil beam scanning in the dose-driven continuous scanning (DDCS).Approach. A diverse set of six clinical plans, representing various spot patterns and treatment sites, was used to evaluate the effectiveness of scan time optimization and scan length optimization. The DDCS dose discrepancy and BDT with optimized scan paths was compared to the default serpentine scan path.Main results. Both scan time optimization and scan path optimization were able to reduce the DDCS dose discrepancy compared to the default serpentine scan path. All plans, except for the layer repainting lung plan, achieved a 2%/2 mm gamma pass rate of over 99% and less than 1% PTV DVH root mean square error (RMSE) through scan path optimization. In the case of the layer repainting lung plan, when compared to the default serpentine scan path, the 2%/2 mm gamma pass rate showed improvements from 91.3% to 93.1% and 95.8%, while the PTV DVH RMSE decreased from 2.1% to 1.7% and 1.1% for scan time optimization and scan length optimization, respectively. Although scan time optimization resulted in shorter total scan times for all plans compared to the default scan path and scan length optimization tended to have longer total scan times. However, due to the short total scan times and their minimal contribution to the total BDT, the impact of scan path optimization on the total BDT was practically negligible.Significance. Both scan time optimization and scan length optimization proved to be effective in minimizing DDCS dose discrepancy. No definitive winner can be determined between these two optimization approaches. Both scan time and scan length optimization had minimal effect on the total BDT.

18.
Cancers (Basel) ; 15(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37627112

RESUMO

Pencil beam scanning delivered with continuous scanning has several advantages over conventional discrete spot scanning. Such advantages include improved beam delivery efficiency and reduced beam delivery time. However, a move dose is delivered between consecutive spots with continuous scanning, and current treatment planning systems do not take this into account. Therefore, continuous scanning and discrete spot plans have an inherent dose discrepancy. Using the operating parameters of the state-of-the-art particle therapy system, we conducted a proof-of-concept study in which we systematically generated 28 plans for cubic targets with different combinations of plan parameters and simulated the dose discrepancies between continuous scanning and a planned one. A nomograph to guide the selection of plan parameters was developed to reduce the dose discrepancy. The effectiveness of the nomograph was evaluated with two clinical cases (one prostate and one liver). Plans with parameters guided by the nomograph decreased dose discrepancy than those used standard plan parameters. Specifically, the 2%/2 mm gamma passing rate increased from 96.3% to 100% for the prostate case and from 97.8% to 99.7% for the liver case. The CTV DVH root mean square error decreased from 2.2% to 0.2% for the prostate case and from 1.8% to 0.9% for the liver case. The decreased dose discrepancy may allow the relaxing of the delivery constraint for some cases, leading to greater benefits in continuous scanning. Further investigation is warranted.

19.
Phys Med Biol ; 68(17)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37499682

RESUMO

Objective. UNet-based deep-learning (DL) architectures are promising dose engines for traditional linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently with various strategies, making it challenging to fairly compare the results from different studies. The objective of this study is to thoroughly evaluate the performance of UNet-based models on magnetic-resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.Approach. The UNet-based models, including the standard-UNet, cascaded-UNet, dense-dilated-UNet, residual-UNet, HD-UNet, and attention-aware-UNet, were implemented. The model input is patient CT and IMRT field dose in water, and the output is patient dose calculated by DL model. The reference dose was calculated by the Monaco Monte Carlo module. Twenty training and ten test cases of prostate patients were included. The accuracy of the DL-calculated doses was measured using gamma analysis, and the calculation efficiency was evaluated by inference time.Results. All the studied models effectively corrected low-accuracy doses in water to high-accuracy patient doses in a magnetic field. The gamma passing rates between reference and DL-calculated doses were over 86% (1%/1 mm), 98% (2%/2 mm), and 99% (3%/3 mm) for all the models. The inference times ranged from 0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Each model demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest inference, dense-dilated-UNet was consistently accurate regardless of model levels, standard-UNet had the shortest inference but relatively lower accuracy, and the others showed average performance. Therefore, the best-performing model would depend on the specific clinical needs and available computational resources.Significance. The feasibility of using common UNet-based models for MR-Linac-based dose calculations has been explored in this study. By using the same model input type, patient training data, and computing environment, a fair assessment of the models' performance was present.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas , Método de Monte Carlo
20.
Med Phys ; 50(7): 4067-4078, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37272223

RESUMO

BACKGROUND: Absolute dosimetry measurement is an integral part of Treatment Planning System (TPS) commissioning and it involves measuring the integrated absorbed dose to water for all energies in a pencil beam scanning delivery system. During the commissioning of Singapore's first proton therapy center, a uniform scanned field with an Advanced Markus chamber method was employed for this measurement, and a large dose fluctuation of at least 5% was observed for 10% of the energy layers during repeated measurements. PURPOSE: This study aims to understand the root cause of this fluctuation by relating the actual delivered spot information in the log file with the charge measurement by the ion chambers. METHODS: A dedicated pencil beam dose algorithm was developed, taking into account the log file parameters, to calculate the dose for a single energy layer in a homogeneous water phantom. Three energies, 70.2, 182.7, and 228.7 MeV were used in this study, with the 182.7 MeV energy exhibiting large dose fluctuation. The dose fluctuation was investigated as a function of detector's sizes (pinpoint 3D, Advanced Markus, PTW 34070, and PTW 34089) and water depth (2 , 6, and 20 cm). Twelve ion chambers measurements were performed for each chamber and depth. The comparison of the theoretically predicted integrated dose and the charge measurement served as a validation of the algorithm. RESULTS: About 5.9% and 9.6% dose fluctuation were observed in Advanced Markus and pinpoint 3D measurements at 2 cm depth for 182.7 MeV, while fluctuation of 1.6% and 1.1% were observed in Advanced Markus with 228.7 and 70.2 MeV at similar depth. Fluctuation of less than 0.1% was observed for PTW34070 and PTW 34089 for all energies. The fluctuation was found to diminish with larger spot size at 20 cm depth to 1.3% for 182.7 MeV. The theoretical and measured charge comparison showed a high linear correlation of R 2 > 0.80 ${R^2} > 0.80$ for all datasets, indicating the fluctuation originated from the delivered spot characteristics. The cause of fluctuation was identified to be due to the spill change occurring close to the detector, and since the spot positional deviation profiles were different between two spills, this resulted in local hot spots between columns of spots. The actual position of spill change varies randomly during measurement, which led to a random occurrence of hot spot within the detector's sensitive volume and a fluctuating dose measurement. CONCLUSION: This is the first report of a dose fluctuation greater than 5% in absolute dosimetry measurement with a uniform scanned field and the cause of the fluctuation has been conclusively determined. It is important to choose the MU and scanning pattern carefully to avoid spill change happening when the spot delivery is near the detector.


Assuntos
Terapia com Prótons , Prótons , Síncrotrons , Radiometria/métodos , Terapia com Prótons/métodos , Água , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA