Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(7): e202300743, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37986243

RESUMO

The installation of aldehydes into synthetic protein ligands is an efficient strategy to engage protein lysine residues in remarkably stable imine bonds and augment the compound affinity and selectivity for their biological targets. The high frequency of lysine residues in proteins and the reversibility of the covalent ligand-protein bond support the application of aldehyde-bearing ligands, holding promises for their future use as drugs. This review highlights the increasing exploitation of salicylaldehyde modules in various classes of protein binders, aimed at the reversible-covalent engagement of lysine residues.


Assuntos
Aldeídos , Lisina , Lisina/química , Aldeídos/química , Proteínas , Iminas , Ligantes
2.
Front Mol Biosci ; 10: 1201630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325481

RESUMO

Opportunistic infections from multidrug-resistant pathogens such as Burkholderia cenocepacia are a threatening risk for hospital-bound patients suffering from immunocompromised conditions or cystic fibrosis. B. cenocepacia BC2L-C lectin has been linked to bacterial adhesion and biofilm formation, thus hindering its activity is seen as a promising strategy to reduce the severity of the infection. We recently described the first bifunctional ligands of the trimeric N-terminal domain of BC2L-C (BC2L-C-Nt), capable of simultaneously engaging its fucose-specific sugar binding site and a vicinal region at the interface between two monomers. Here, we report a computational workflow for the study of these glycomimetic bifunctional ligands in complex with BC2L-C-Nt, aimed at investigating the molecular basis of ligand binding and the dynamics of glycomimetic/lectin interactions. In particular, we evaluated the use of molecular docking in the protein trimer, followed by refinement using MM-GBSA re-scoring and MD simulations in explicit water. Computational results were compared to experimental data derived from X-ray crystallography and isothermal titration calorimetry. The computational protocol proved suitable to provide a reliable description of the interactions between the ligands and BC2L-C-Nt, highlighting the contribution of MD simulations in explicit solvent for a good fit with the experimental observations. The information achieved in the study and the whole workflow appear promising for the structure-based design of improved BC2L-C-Nt ligands as novel antimicrobials with antiadhesive properties.

3.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771163

RESUMO

The inhibition of carbohydrate-lectin interactions is being explored as an efficient approach to anti adhesion therapy and biofilm destabilization, two alternative antimicrobial strategies that are being explored against resistant pathogens. BC2L-C is a new type of lectin from Burkholderia cenocepacia that binds (mammalian) fucosides at the N-terminal domain and (bacterial) mannosides at the C-terminal domain. This double carbohydrate specificity allows the lectin to crosslink host cells and bacterial cells. We have recently reported the design and generation of the first glycomimetic antagonists of BC2L-C, ß-C- or ß-N-fucosides that target the fucose-specific N-terminal domain (BC2L-C-Nt). The low water solubility of the designed N-fucosides prevented a full examination of this promising series of ligands. In this work, we describe the synthesis and biophysical evaluation of new L-fucosyl and L-galactosyl amides, designed to be water soluble and to interact with BC2L-C-Nt. The protein-ligand interaction was investigated by Saturation Transfer Difference NMR, Isothermal Titration Calorimetry and crystallographic studies. STD-NMR experiments showed that both fucosyl and galactosyl amides compete with α-methyl fucoside for lectin binding. A new hit compound was identified with good water solubility and an affinity for BC2L-C-Nt of 159 µM (ITC), which represents a one order of magnitude gain over α-methyl fucoside. The x-ray structure of its complex with BC2L-C-Nt was solved at 1.55 Å resolution.


Assuntos
Burkholderia cenocepacia , Lectinas , Animais , Lectinas/química , Burkholderia cenocepacia/química , Ligantes , Amidas/metabolismo , Fucose/química , Mamíferos/metabolismo
4.
Chemistry ; 29(19): e202203768, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594507

RESUMO

Salicylaldehyde (SA) derivatives are emerging as useful fragments to obtain reversible-covalent inhibitors interacting with the lysine residues of the target protein. Here the SA installation at the C terminus of an integrin-binding cyclopeptide, leading to enhanced ligand affinity for the receptor as well as stronger biological activity in cultured glioblastoma cells is reported.


Assuntos
Integrinas , Lisina , Integrinas/metabolismo , Adesão Celular , Peptídeos Cíclicos/química , Oligopeptídeos/química
5.
ACS Chem Biol ; 17(10): 2899-2910, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36174276

RESUMO

Multidrug-resistant pathogens such as Burkholderia cenocepacia have become a hazard in the context of healthcare-associated infections, especially for patients admitted with cystic fibrosis or immuno-compromising conditions. Like other opportunistic Gram-negative bacteria, this pathogen establishes virulence and biofilms through lectin-mediated adhesion. In particular, the superlectin BC2L-C is believed to cross-link human epithelial cells to B. cenocepacia during pulmonary infections. We aimed to obtain glycomimetic antagonists able to inhibit the interaction between the N-terminal domain of BC2L-C (BC2L-C-Nt) and its target fucosylated human oligosaccharides. In a previous study, we identified by fragment virtual screening and validated a small set of molecular fragments that bind BC2L-C-Nt in the vicinity of the fucose binding site. Here, we report the rational design and synthesis of bifunctional C- or N-fucosides, generated by connecting these fragments to a fucoside core using a panel of rationally selected linkers. A modular route starting from two key fucoside intermediates was implemented for the synthesis, followed by evaluation of the new compounds as BC2L-C-Nt ligands with a range of techniques (surface plasmon resonance, isothermal titration calorimetry, saturation transfer difference NMR, differential scanning calorimetry, and X-ray crystallography). This study resulted in a hit molecule with an order of magnitude gain over the starting methyl fucoside and in two crystal structures of antagonist/lectin complexes.


Assuntos
Burkholderia cenocepacia , Burkholderia , Humanos , Lectinas/química , Burkholderia/química , Fucose/química , Burkholderia cenocepacia/química , Burkholderia cenocepacia/metabolismo , Modelos Moleculares , Oligossacarídeos/química
6.
Front Chem ; 10: 946087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059878

RESUMO

Cadherins promote cell-cell adhesion by forming homophilic interactions via their N-terminal extracellular domains. Hence, they have broad-ranging physiological effects on tissue organization and homeostasis. When dysregulated, cadherins contribute to different aspects of cancer progression and metastasis; therefore, targeting the cadherin adhesive interface with small-molecule antagonists is expected to have potential therapeutic and diagnostic value. Here, we used molecular docking simulations to evaluate the propensity of three different libraries of commercially available drug-like fragments (nearly 18,000 compounds) to accommodate into the Trp2 binding pocket of E-cadherin, a crucial site for the orchestration of the protein's dimerization mechanism. Top-ranked fragments featuring five different aromatic chemotypes were expanded by means of a similarity search on the PubChem database (Tanimoto index >90%). Of this set, seven fragments containing an aromatic scaffold linked to an aliphatic chain bearing at least one amine group were finally selected for further analysis. Ligand-based NMR data (Saturation Transfer Difference, STD) and molecular dynamics simulations suggest that these fragments can bind E-cadherin mostly through their aromatic moiety, while their aliphatic portions may also diversely engage with the mobile regions of the binding site. A tetrahydro-ß-carboline scaffold functionalized with an ethylamine emerged as the most promising fragment.

7.
ChemMedChem ; 17(15): e202200279, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35620983

RESUMO

Amine-carbamate self-immolative (SI) spacers represent practical and versatile tools in targeted prodrugs, but their slow degradation mechanism limits drug activation at the site of disease. We engineered a pyrrolidine-carbamate SI spacer with a tertiary amine handle which strongly accelerates the spacer cyclization to give a bicyclic urea and the free hydroxy groups of either cytotoxic (Camptothecin) or immunostimulatory (Resiquimod) drugs. In silico conformational analysis and pKa calculations suggest a plausible mechanism for the superior efficacy of the advanced SI spacer compared to state-of-art analogues.


Assuntos
Carbamatos , Pró-Fármacos , Aminas , Liberação Controlada de Fármacos , Pró-Fármacos/farmacologia , Pirrolidinas/farmacologia
9.
Chem Commun (Camb) ; 57(63): 7778-7781, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34263896

RESUMO

Cyclative cleavage of an amine-carbamate self-immolative spacer to deliver a hydroxyl cargo was inhibited by spacer derivatisation with a phosphate monoester handle. This trifunctional spacer was installed in a model anticancer prodrug that showed fast drug release only when incubated with both a protease and a phosphatase enzyme.


Assuntos
Antineoplásicos/metabolismo , Peptídeo Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Pró-Fármacos/metabolismo , Antineoplásicos/química , Liberação Controlada de Fármacos , Estrutura Molecular , Pró-Fármacos/química
10.
Chemistry ; 27(40): 10341-10348, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33769626

RESUMO

Burkholderia cenocepacia is an opportunistic Gram-negative bacterium that causes infections in patients suffering from chronic granulomatous diseases and cystic fibrosis. It displays significant morbidity and mortality due to extreme resistance to almost all clinically useful antibiotics. The bacterial lectin BC2L-C expressed in B. cenocepacia is an interesting drug target involved in bacterial adhesion and subsequent deadly infection to the host. We solved the first high resolution crystal structure of the apo form of the lectin N-terminal domain (BC2L-C-nt) and compared it with the ones complexed with carbohydrate ligands. Virtual screening of a small fragment library identified potential hits predicted to bind in the vicinity of the fucose binding site. A series of biophysical techniques and X-ray crystallographic screening were employed to validate the interaction of the hits with the protein domain. The X-ray structure of BC2L-C-nt complexed with one of the identified active fragments confirmed the ability of the site computationally identified to host drug-like fragments. The fragment affinity could be determined by titration microcalorimetry. These structure-based strategies further provide an opportunity to elaborate the fragments into high affinity anti-adhesive glycomimetics, as therapeutic agents against B. cenocepacia.


Assuntos
Infecções por Burkholderia , Burkholderia cenocepacia , Preparações Farmacêuticas , Humanos , Lectinas , Modelos Moleculares , Fatores de Virulência
11.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339382

RESUMO

Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-ß-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvß3 and α5ß1 receptors using biotinylated vitronectin (αvß3) and fibronectin (α5ß1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvß3 over α5ß1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvß3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVß3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.


Assuntos
Ácidos Carboxílicos/química , Fibronectinas/química , Integrina alfaVbeta3/química , Oligopeptídeos/química , Peptídeos Cíclicos/química , Peptidomiméticos/química , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Humanos , Concentração Inibidora 50 , Integrina alfaVbeta3/metabolismo , Isomerismo , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacologia
12.
Sci Rep ; 10(1): 7410, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366988

RESUMO

Construction of small molecule ligand (SML) based delivery systems has been performed starting from a polyfunctionalized isoxazoline scaffold, whose αvß3 and α5ß1 integrins' potency has been already established. The synthesis of this novel class of ligands was obtained by conjugation of linkers to the heterocyclic core via Huisgen-click reaction, with the aim to use them as "shuttles" for selective delivery of diagnostic agents to cancer cells, exploring the effects of the side chains in the interaction with the target. Compounds 17b and 24 showed excellent potency towards α5ß1 integrin acting as selective antagonist and agonist respectively. Further investigations confirmed their effects on target receptor through the analysis of fibronectin-induced ERK1/2 phosphorylation. In addition, confocal microscopy analysis allowed us to follow the fate of EGFP conjugated α5ß1 integrin and 17b FITC-conjugated (compound 31) inside the cells. Moreover, the stability in water solution at different values of pH and in bovine serum confirmed the possible exploitation of these peptidomimetic molecules for pharmaceutical application.


Assuntos
Integrina alfa5beta1/química , Integrina alfaVbeta3/química , Isoxazóis/química , Oligopeptídeos/química , Peptidomiméticos , Animais , Bovinos , Adesão Celular , Fibronectinas/química , Proteínas de Fluorescência Verde/química , Humanos , Concentração de Íons de Hidrogênio , Células K562 , Ligantes , Sistema de Sinalização das MAP Quinases , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular
13.
Angew Chem Int Ed Engl ; 59(10): 4176-4181, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881115

RESUMO

Self-immolative (SI) spacers are sophisticated chemical constructs designed for molecular delivery or material degradation. We describe herein a (S)-2-(aminomethyl)pyrrolidine SI spacer that is able to release different types of anticancer drugs (possessing either a phenolic or secondary and tertiary hydroxyl groups) through a fast cyclization mechanism involving carbamate cleavage. The high efficiency of drug release obtained with this spacer was found to be beneficial for the in vitro cytotoxic activity of protease-sensitive prodrugs, compared with a commonly used spacer of the same class. These findings expand the repertoire of degradation machineries and are instrumental for the future development of highly efficient delivery platforms.


Assuntos
Antineoplásicos/farmacologia , Carbamatos/farmacologia , Pró-Fármacos/farmacologia , Prolina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carbamatos/síntese química , Carbamatos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclização , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Prolina/síntese química , Prolina/química
14.
Cells ; 8(11)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766310

RESUMO

Metastatic spread is mainly sustained by cancer stem cells (CSC), a subpopulation of cancer cells that displays stemness features. CSC are thought to be derived from cancer cells that undergo epithelial to mesenchymal transition (EMT), thus acquiring resistance to anoikis and anti-cancer drugs. After detachment from the primary tumor mass, CSC reach the blood and lymphatic flow, and disseminate to the target tissue. This process is by nature dynamic and in vitro models are quite far from the in vivo situation. In this study, we have tried to reproduce the adhesion process of CSC to a target tissue by using a 3D dynamic cell culture system. We isolated two populations of 3D tumor spheroids displaying CSC-like features from breast carcinoma (MCF-7) and lung carcinoma (A549) cell lines. Human fibroblasts were layered on a polystyrene scaffold placed in a dynamically perfused millifluidic system and then the adhesion of tumor cell derived from spheroids to fibroblasts was investigated under continuous perfusion. After 24 h of perfusion, we found that spheroid cells tightly adhered to fibroblasts layered on the scaffold, as assessed by a scanning electron microscope (SEM). To further investigate mechanisms involved in spheroid cell adhesion to fibroblasts, we tested the effect of three RGD integrin antagonists with different molecular structures on cell adhesion; when injected into the circuit, only cilengitide was able to inhibit cell adhesion to fibroblasts. Although our model needs further refinements and improvements, we do believe this study could represent a promising approach in improving current models to study metastatic infiltration in vitro and a new tool to screen new potential anti-metastatic molecules.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Esferoides Celulares , Células Tumorais Cultivadas , Biomarcadores , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/ultraestrutura , Fenótipo , Esferoides Celulares/efeitos dos fármacos
16.
Chemistry ; 25(65): 14740-14757, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31418970

RESUMO

The covalent conjugation of potent cytotoxic agents to either macromolecular carriers or small molecules represents a well-known approach to increase the therapeutic index of these drugs, thus improving treatment efficacy and minimizing side effects. In general, cytotoxic activity is displayed only upon cleavage of a specific chemical bond (linker) that connects the drug to the carrier. The perfect balance between the linker stability and its selective cleavage represents the key for success in these therapeutic approaches and the chemical toolbox to reach this goal is continuously expanding. In this Review article, we highlight recent advances on the different modalities to promote the selective release of cytotoxic agents, either by exploiting specific hallmarks of the tumor microenvironment (e.g. pH, enzyme expression) or by the application of external triggers (e.g. light and bioorthogonal reactions).


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Liberação Controlada de Fármacos , Enzimas/metabolismo , Humanos , Hidrólise , Raios Infravermelhos , Neoplasias/patologia , Microambiente Tumoral
17.
Chemistry ; 25(51): 11831-11836, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31286579

RESUMO

Presented herein is a study of the conformation and reactivity of highly reactive thioglycoside donors. The structural studies have been conducted using NMR spectroscopy and computational methods. The reactivity of these donors has been investigated in bromine-promoted glycosylations of aliphatic and sugar alcohols. Swift reaction times, high yields, and respectable 1,2-cis stereoselectivity were observed in a majority of these glycosylations.

18.
PLoS Comput Biol ; 15(6): e1007041, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158220

RESUMO

Cadherins are homophilic cell-cell adhesion molecules whose aberrant expression has often been shown to correlate with different stages of tumor progression. In this work, we investigate the interaction of two peptidomimetic ligands with the extracellular portion of human E-cadherin using a combination of NMR and computational techniques. Both ligands have been previously developed as mimics of the tetrapeptide sequence Asp1-Trp2-Val3-Ile4 of the cadherin adhesion arm, and have been shown to inhibit E-cadherin-mediated adhesion in epithelial ovarian cancer cells with millimolar potency. To sample a set of possible interactions of these ligands with the E-cadherin extracellular portion, STD-NMR experiments in the presence of two slightly different constructs, the wild type E-cadherin-EC1-EC2 fragment and the truncated E-cadherin-(Val3)-EC1-EC2 fragment, were carried out at three temperatures. Depending on the protein construct, a different binding epitope of the ligand and also a different temperature effect on STD signals were observed, both suggesting an involvement of the Asp1-Trp2 protein sequence among all the possible binding events. To interpret the experimental results at the atomic level and to probe the role of the cadherin adhesion arm in the dynamic interaction with the peptidomimetic ligand, a computational protocol based on docking calculations and molecular dynamics simulations was applied. In agreement with NMR data, the simulations at different temperatures unveil high variability/dynamism in ligand-cadherin binding, thus explaining the differences in ligand binding epitopes. In particular, the modulation of the signals seems to be dependent on the protein flexibility, especially at the level of the adhesive arm, which appears to participate in the interaction with the ligand. Overall, these results will help the design of novel cadherin inhibitors that might prevent the swap dimer formation by targeting both the Trp2 binding pocket and the adhesive arm residues.


Assuntos
Caderinas , Biologia Computacional/métodos , Espectroscopia de Ressonância Magnética/métodos , Peptidomiméticos , Caderinas/química , Caderinas/metabolismo , Humanos , Ligantes , Simulação de Dinâmica Molecular , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Ligação Proteica
19.
Front Chem ; 7: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984741

RESUMO

Tumor angiogenesis, essential for cancer development, is regulated mainly by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which are overexpressed in cancer cells. Therefore, the VEGF/VEGFR interaction represents a promising pharmaceutical target to fight cancer progression. The VEGF surface interacting with VEGFRs comprises a short α-helix. In this work, helical oligopeptides mimicking the VEGF-C helix were rationally designed based on structural analyses and computational studies. The helical conformation was stabilized by optimizing intramolecular interactions and by introducing helix-inducing Cα,α-disubstituted amino acids. The conformational features of the synthetic peptides were characterized by circular dichroism and nuclear magnetic resonance, and their receptor binding properties and antiangiogenic activity were determined. The best hits exhibited antiangiogenic activity in vitro at nanomolar concentrations and were resistant to proteolytic degradation.

20.
Org Biomol Chem ; 17(19): 4705-4710, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31020985

RESUMO

A non-internalizing αvß3 integrin ligand was conjugated to the anticancer drug MMAE through a ß-glucuronidase-responsive linker. In the presence of ß-glucuronidase, only the conjugate bearing a PEG4 spacer inhibited the proliferation of integrin-expressing cancer cells at low nanomolar concentrations, indicating important structural requirements for the efficacy of these therapeutics.


Assuntos
Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Integrina alfaVbeta3/antagonistas & inibidores , Oligopeptídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Glucuronidase , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Ligantes , Conformação Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Relação Estrutura-Atividade , Vitronectina/antagonistas & inibidores , Vitronectina/química , Vitronectina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA