Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203771

RESUMO

Increasing evidence of sexual dimorphism in the pathophysiology of metabolic complications caused by sex steroids is under investigation. The gut microbiota represents a complex microbial ecosystem involved in energy metabolism, immune response, nutrition acquisition, and the health of host organisms. Gender-specific differences in composition are present between females and males. The purpose of this study was to use cross-sex fecal microbiota transplantation (FMT) for the detection of sex-dependent metabolic, hormonal, and gut microbiota changes in female and male recipients. Healthy non-obese female and male Wistar rats were divided into donor, same-sex, and cross-sex recipient groups. After a 30-day period of FMT administration, biochemical markers (glucose and lipid metabolism) and sex hormones were measured, and the gut microbiota was analyzed. The cross-sex male recipients displayed a significantly lower testosterone concentration compared to the males that received same-sex FMT. Sex-dependent changes caused by cross-sex FMT were detected, while several bacterial taxa correlated with plasma testosterone levels. This study represents the first to study the effect of cross-sex changes in the gut microbiome concerning metabolic and hormonal changes/status in adult non-obese Wistar rats. Herein, we present cross-sex FMT as a potential tool to modify sex-specific pathologies.


Assuntos
Transplante de Microbiota Fecal , Animais , Feminino , Masculino , Ratos , Metabolismo dos Lipídeos , Ratos Wistar , Testosterona/sangue
2.
Front Physiol ; 14: 1195604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449011

RESUMO

Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory disorder with high prevalence among middle-aged women. Collagen-induced arthritis (CIA) is the most widely used animal model of RA, however, sex differences and long-term effects of CIA in mice are poorly described in the literature. Aim: Therefore, the present study aimed to analyze the long-term effects of CIA on the joints of middle-aged mice of both sexes and to describe potential sex differences. Materials and methods: CIA was induced in middle-aged DBA/1J mice by immunization with bovine type II collagen and complete Freund's adjuvant. Saline was administered to control mice. Arthritis score assessment, plethysmometry, and thermal imaging of the joints were performed weekly for 15 weeks. Locomotor activity, micro-computed tomography, joint histology and biochemical analyses were performed at the end of the experiment. Results: Our results indicate a similar prevalence of arthritis in both sexes of mice-67% (8/12) of females and 89% (8/9) males with an earlier onset in males (day 14 vs. day 35). After the arthritis scores peaked on day 56 for males and day 63 for females, they steadily declined until the end of the experiment on day 105. A similar dynamics was observed in paw volume and temperature analyzing different aspects of joint inflammation. Long-term consequences including higher proteinuria (by 116%), loss of bone density (by 33.5%) and joint damage in terms of synovial hyperplasia as well as bone and cartilage erosions were more severe in CIA males compared to CIA females. There were no significant differences in locomotor activity between CIA mice and CTRL mice of any sex. Conclusion: This is the first study to describe the long-term effects of the CIA model in terms of sex differences in DBA/1J mice. Our results indicate sex differences in the dynamics, but not in the extent of arthritis. An earlier onset of arthritis and more severe consequences on joints, bones and kidneys were found in males. The underlying immune pathomechanisms responsible for the limited duration of the arthritis symptoms and the opposite sex difference in comparison to RA patients require further investigation.

3.
J Fungi (Basel) ; 8(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36294611

RESUMO

The mycobiome is the fungal component of the human microbial ecosystem that represents only a small part of this environment but plays an essential role in maintaining homeostasis. Colonization by fungi begins immediately after birth. The initial mycobiome is influenced by the gestational age of a newborn, birth weight, delivery method and feeding method. During a human's life, the composition of the mycobiome is further influenced by a large number of endogenous and exogenous factors. The most important factors are diet, body weight, age, sex and antibiotic and antifungal therapy. The human mycobiome inhabits the oral cavity, gastrointestinal tract, respiratory tract, urogenital tract and skin. Its composition can influence the gut-brain axis through immune and non-immune mediated crosstalk systems. It also interacts with other commensals of the ecosystem through synergistic and antagonistic relationships. Moreover, colonization of the gut by opportunistic fungal pathogens in immunocompromised individuals can lead to clinically relevant disease states. Thus, the mycobiome represents an essential part of the microbiome associated with a variety of physiological and pathological processes. This review summarizes the current knowledge on the composition of the mycobiome in specific sites of the human body and its role in health and disease.

4.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142642

RESUMO

Gut microbiota dysbiosis has recently been reported in a number of clinical states, including neurological, psychiatric, cardiovascular, metabolic and autoimmune disorders. Yet, it is not completely understood how colonizing microorganisms are implicated in their pathophysiology and molecular pathways. There are a number of suggested mechanisms of how gut microbiota dysbiosis triggers or sustains extraintestinal diseases; however, none of these have been widely accepted as part of the disease pathogenesis. Recent studies have proposed that gut microbiota and its metabolites could play a pivotal role in the modulation of immune system responses and the development of autoimmunity in diseases such as rheumatoid arthritis, multiple sclerosis or type 1 diabetes. Fecal microbiota transplantation (FMT) is a valuable tool for uncovering the role of gut microbiota in the pathological processes. This review aims to summarize the current knowledge about gut microbiota dysbiosis and the potential of FMT in studying the pathogeneses and therapies of autoimmune diseases. Herein, we discuss the extraintestinal autoimmune pathologies with at least one published or ongoing FMT study in human or animal models.


Assuntos
Doenças Autoimunes , Microbioma Gastrointestinal , Animais , Doenças Autoimunes/terapia , Autoimunidade , Disbiose/terapia , Transplante de Microbiota Fecal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA