Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 588, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522739

RESUMO

BACKGROUND: Sparganium (Typhaceae) is a widespread temperate genus of ecologically important aquatic plants. Previous reconstructions of the phylogenetic relationships among Sparganium species are incompletely resolved partly because they were based on molecular markers comprising < 7,000 bp. Here, we sequenced and assembled the complete chloroplast genomes from 19 Sparganium samples representing 15 putative species and three putative subspecies in order to explore chloroplast genome evolution in this genus, clarify taxonomic lineages, estimate the divergence times of Sparganium species, and reconstruct aspects of the biogeographic history of the genus. RESULTS: The 19 chloroplast genomes shared a conserved genome structure, gene content, and gene order. Our phylogenomic analysis presented a well-resolved phylogeny with robust support for most clades. Non-monophyly was revealed in three species: S. erectum, S. eurycarpum, and S. stoloniferum. Divergence time estimates suggest that the two subgenera of Sparganium split from each other ca. 30.67 Ma in the middle Oligocene. The subgenus Xanthosparganium diversified in the late Oligocene and Miocene, while the subgenus Sparganium diversified in the late Pliocene and Pleistocene. Ancestral area reconstruction suggested that the two subgenera may have originated in East Eurasia and North America. CONCLUSION: The non-monophyletic nature of three putative species underscores the necessity of taxonomic revision for Sparganium: S. stoloniferum subsp. choui may be more appropriately identified as S. choui, and subspecies of S. erectum may be in fact distinct species. The estimated diversification times of the two subgenera correspond to their species and nucleotide diversities. The likely ancestral area for most of subgenus Xanthosparganium was East Eurasia and North America from where it dispersed into West Eurasia and Australia. Most of subgenus Sparganium likely originated in North America and then dispersed into Eurasia. Our study demonstrates some of the ways in which complete chloroplast genome sequences can provide new insights into the evolution, phylogeny, and biogeography of the genus Sparganium.


Assuntos
Genoma de Cloroplastos , Typhaceae , Filogenia , Genoma de Cloroplastos/genética , Filogeografia , América do Norte
2.
Sci Rep ; 12(1): 7279, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508648

RESUMO

Sparganium longifolium was reported as a hybrid between S. emersum and S. gramineum based on its intermediate type or the common characteristics of its parent species. Its hybrid origin needs to be confirmed using molecular technology. We investigated the origin of S. longifolium based on 10 populations of S. emersum, S. gramineum and S. longifolium from five lakes in European Russia, using sequences of six nuclear loci and one chloroplast DNA fragment. Haplotype network, principal coordinate analysis and genetic clustering based on data of nuclear loci confirmed that S. longifolium is the hybrid between S. emersum and S. gramineum. We found that the natural hybridization between S. emersum and S. gramineum is bidirectional but asymmetrical, and the latter mainly acts as maternal species. We also found that all samples of S. longifolium were F1 generations, and thus hypothesized that S. emersum and S. gramineum could likely maintain their species boundary through the post-zygote reproductive isolation mechanism of F1 generation sterility.


Assuntos
Typhaceae , DNA de Cloroplastos/genética , Haplótipos/genética , Hibridização Genética , Federação Russa , Typhaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA