Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(9): 305, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001968

RESUMO

Dimethoate (DMT) is one of the most harmful and commonly used organophosphate pesticides in agricultural lands to control different groups of parasitic insects. However, this pesticide is considered a dangerous pollutant for aquatic organisms following its infiltration in coastal ecosystems through leaching. Yet, our investigation aimed to gain new insights into the toxicity mechanism of DMT in the muscles of the green crab Carcinus aestuarii, regarding oxidative stress, neurotransmission impairment, histological aspects, and changes in lipid composition, assessed for the first time on the green crab's muscle. Specimens of C. aestuarii were exposed to 50, 100, and 200 µg DMT L-1 for 24 h. Compared to the negative control group, the higher the DMT concentration, the lower the saturated fatty acids (SFA), and the higher the monounsaturated fatty acids (MUFA). The significant increase in polyunsaturated fatty acid n-6 (PUFA n-6) was related to the high release, mainly, of linoleic acid (LA, C18: 2n6) and arachidonic acid (ARA, C20: 4n6) levels. Biochemical biomarkers showed that DMT exposure promoted oxidative stress, highlighted by increased levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), advanced oxidation protein product levels (AOPP), and protein carbonyl (PCO). Furthermore, the antioxidant defense system was activated, as demonstrated by the significant changes in the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) levels associated with an adaptation process of C. aestuarii to cope with the DMT exposure. This pesticide significantly impairs the neurotransmission process, as evidenced by the inhibition of acetylcholinesterase (AChE) activity. Finally, several histopathological changes were revealed in DMT-treated crabs, including vacuolation, and muscle bundle loss.This research offered new insights into the toxic mechanism of DMT, pointing to the usefulness of fatty acid (FA) composition as a sensitive biomarker in littoral crabs.


Assuntos
Braquiúros , Dimetoato , Músculos , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Dimetoato/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Braquiúros/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Músculos/efeitos dos fármacos , Músculos/metabolismo , Ácidos Graxos/metabolismo , Inseticidas/toxicidade , Biomarcadores/metabolismo , Malondialdeído/metabolismo
2.
Pestic Biochem Physiol ; 197: 105699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072554

RESUMO

Dimethoate is a broad-spectrum organophosphate insecticide and acaricide. Through various pathways, such as runoff and drift, dimethoate can reach marine environment, and easily impact common organisms in coastal areas, close to agriculture lands, namely crustaceans. The purpose of this study was to investigate the potential effects of dimethoate exposure (50, 100, and 200 µg/l), for 1 day, on a wide range of markers of oxidative stress and neurotransmission impairment, as well as fatty acids composition and histopathological aspect in the gills of the green crab Carcinus aestuarii. A significant increase in n-3 polyunsaturated fatty acids series, namely the eicosapentaenoic acid (C20: 5n3) and its precursor alpha-linolenic acid (C 18: 3n3) in dimethoate-treated crabs was recorded. Concerning n-6 polyunsaturated fatty acids, we noted a high reduction in arachidonic acid (C20:4n-6) levels. Dimethoate exposure increased the levels of hydrogen peroxide, malondialdehyde, lipid hydroperoxides, protein carbonyl, and caused the advanced oxidation of protein products along with enzymatic and non-enzymatic antioxidant-related markers. Acetylcholinesterase activity was highly inhibited following exposure to dimethoate in a concentration-dependent manner. Finally, deleterious histopathological changes with several abnormalities were noted in exposed animals confirming our biochemical findings. The present study offered unique insights to establish a relationship between redox status and alterations in fatty acid composition, allowing a better understanding of dimethoate-triggered toxicity.


Assuntos
Braquiúros , Dimetoato , Animais , Dimetoato/toxicidade , Braquiúros/metabolismo , Ácidos Graxos , Acetilcolinesterase/metabolismo , Brânquias , Oxirredução , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA