Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949964

RESUMO

Decreased activity and expression of the G-protein coupled receptor GPR88 is linked to many behavior-linked neurological disorders. Published preclinical GPR88 allosteric agonists all have in vivo pharmacokinetic properties that preclude their progression to the clinic, including high lipophilicity and poor brain penetration. Here, we describe our attempts to improve GPR88 agonists' drug-like properties and our analysis of the trade-offs required to successfully target GPR88's allosteric pocket. We discovered two new GPR88 agonists: One that reduced morphine-induced locomotor activity in a murine proof-of-concept study, and the atropoisomeric BI-9508, which is a brain penetrant and has improved pharmacokinetic properties and dosing that recommend it for future in vivo studies in rodents. BI-9508 still suffers from high lipophilicity, and research on this series was halted. Because of its utility as a tool compound, we now offer researchers access to BI-9508 and a negative control free of charge via Boehringer Ingelheim's open innovation portal opnMe.com.

2.
J Neural Transm (Vienna) ; 131(5): 525-561, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38554193

RESUMO

Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.


Assuntos
Alcoolismo , Epigênese Genética , Alucinógenos , Animais , Humanos , Alcoolismo/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Epigênese Genética/efeitos dos fármacos , Alucinógenos/uso terapêutico
3.
Biol Psychiatry ; 94(11): 852-862, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393045

RESUMO

BACKGROUND: Chronic opioid exposure leads to hedonic deficits and enhanced vulnerability to addiction, which are observed and even strengthen after a period of abstinence, but the underlying circuit mechanisms are poorly understood. In this study, using both molecular and behavioral approaches, we tested the hypothesis that neurons expressing mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) are involved in addiction vulnerability associated with morphine abstinence. METHODS: MOR-Cre mice were exposed to chronic morphine and then went through spontaneous withdrawal for 4 weeks, a well-established mouse model of morphine abstinence. We studied DRN-MOR neurons of abstinent mice using 1) viral translating ribosome affinity for transcriptome profiling, 2) fiber photometry to measure neuronal activity, and 3) an opto-intracranial self-stimulation paradigm applied to DRN-MOR neurons to assess responses related to addiction vulnerability including persistence to respond, motivation to obtain the stimulation, self-stimulation despite punishment, and cue-induced reinstatement. RESULTS: DRN-MOR neurons of abstinent animals showed a downregulation of genes involved in ion conductance and MOR-mediated signaling, as well as altered responding to acute morphine. Opto-intracranial self-stimulation data showed that abstinent animals executed more impulsive-like and persistent responses during acquisition and scored higher on addiction-like criteria. CONCLUSIONS: Our data suggest that protracted abstinence to chronic morphine leads to reduced MOR function in DRN-MOR neurons and abnormal self-stimulation of these neurons. We propose that DRN-MOR neurons have partially lost their reward-facilitating properties, which in turn may lead to increased propensity to perform addiction-related behaviors.


Assuntos
Núcleo Dorsal da Rafe , Morfina , Camundongos , Animais , Morfina/farmacologia , Receptores Opioides mu , Analgésicos Opioides , Neurônios/metabolismo
4.
Biol Psychiatry ; 94(11): 842-851, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285896

RESUMO

BACKGROUND: Mu opioid receptors (MORs) are key for reward processing, mostly studied in dopaminergic pathways. MORs are also expressed in the dorsal raphe nucleus (DRN), which is central for the modulation of reward and mood, but MOR function in the DRN remains underexplored. Here, we investigated whether MOR-expressing neurons of the DRN (DRN-MOR neurons) participate in reward and emotional responses. METHODS: We characterized DRN-MOR neurons anatomically using immunohistochemistry and functionally using fiber photometry in responses to morphine and rewarding/aversive stimuli. We tested the effect of opioid uncaging on the DRN on place conditioning. We examined the effect of DRN-MOR neuron optostimulation on positive reinforcement and mood-related behaviors. We mapped their projections and selected DRN-MOR neurons projecting to the lateral hypothalamus for a similar optogenetic experimentation. RESULTS: DRN-MOR neurons form a heterogeneous neuronal population essentially composed of GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons. Calcium activity of DRN-MOR neurons was inhibited by rewarding stimuli and morphine. Local photo-uncaging of oxymorphone in the DRN produced conditioned place preference. DRN-MOR neuron optostimulation triggered real-time place preference and was self-administered, promoted social preference, and reduced anxiety and passive coping. Finally, specific optostimulation of DRN-MOR neurons projecting to the lateral hypothalamus recapitulated the reinforcing effects of total DRN-MOR neuron stimulation. CONCLUSIONS: Our data show that DRN-MOR neurons respond to rewarding stimuli and that their optoactivation has reinforcing effects and promotes positive emotional responses, an activity which is partially mediated by their projections to the lateral hypothalamus. Our study also suggests a complex regulation of DRN activity by MOR opioids, involving mixed inhibition/activation mechanisms that fine-tune DRN function.


Assuntos
Núcleo Dorsal da Rafe , Receptores Opioides mu , Neurônios/fisiologia , Morfina/farmacologia , Analgésicos Opioides , Recompensa
5.
J Med Chem ; 66(4): 2964-2978, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749855

RESUMO

GPR88 is an orphan G protein-coupled receptor mainly expressed in the brain, whose endogenous ligand has not yet been identified. To elucidate GPR88 functions, our group has developed RTI-13951-33 (1b) as the first in vivo active GPR88 agonist, but its poor metabolic stability and moderate brain permeability remain to be further optimized. Here, we report the design, synthesis, and pharmacological characterization of a new series of RTI-13951-33 analogues with the aim of improving pharmacokinetic properties. As a result, we identified a highly potent GPR88 agonist RTI-122 (30a) (cAMP EC50 = 11 nM) with good metabolic stability (half-life of 5.8 h) and brain permeability (brain/plasma ratio of >1) in mice. Notably, RTI-122 was more effective than RTI-13951-33 in attenuating the binge-like alcohol drinking behavior in the drinking-in-the-dark paradigm. Collectively, our findings suggest that RTI-122 is a promising lead compound for drug discovery research of GPR88 agonists.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Estabilidade de Medicamentos , Consumo de Bebidas Alcoólicas/tratamento farmacológico
6.
Addict Biol ; 27(6): e13227, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301207

RESUMO

GPR88 is an orphan G-protein-coupled receptor that is considered a potential target to treat neuropsychiatric disorders, including addiction. Most knowledge about GPR88 function stems from knockout mouse studies, and in vivo pharmacology is still scarce. Here we examine the effects of the novel brain-penetrant agonist RTI-13951-33 on several alcohol-related behaviours in the mouse. In the intermittent-access-two-bottle-choice paradigm, the compound reduced excessive voluntary alcohol drinking, while water drinking was intact. This was observed for C57BL/6 mice, as well as for control but not Gpr88 knockout mice, demonstrating efficacy and specificity of the drug in vivo. In the drinking-in-the-dark paradigm, RTI-13951-33 also reduced binge-like drinking behaviour for control but not Gpr88 knockout mice, confirming the alcohol consumption-reducing effect and in vivo specificity of the drug. When C57BL/6 mice were trained for alcohol self-administration, RTI-13951-33 decreased the number of nose-pokes over a 4-h session and reduced the number of licks and bursts of licks, suggesting reduced motivation to obtain alcohol. Finally, RTI-13951-33 did not induce any place preference or aversion but reduced the expression of conditioned place preference to alcohol, indicative of a reduction of alcohol-reward seeking. Altogether, data show that RTI-13951-33 limits alcohol intake under distinct conditions that require consummatory behaviour, operant response or association with contextual cues. RTI-13951-33 therefore is a promising lead compound to evaluate GPR88 as a therapeutic target for alcohol use disorders. More broadly, RTI-13951-33 represents a unique tool to better understand GPR88 function, disentangle receptor roles in development from those in the adult and perhaps address other neuropsychiatric disorders.


Assuntos
Alcoolismo , Animais , Camundongos , Alcoolismo/tratamento farmacológico , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Camundongos Knockout , Receptores Acoplados a Proteínas G
7.
Mol Psychiatry ; 27(11): 4662-4672, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075963

RESUMO

The neural orphan G protein coupled receptor GPR88 is predominant in the striatum and cortex of both rodents and humans, and considered a potential target for brain disorders. Previous studies have shown multiple behavioral phenotypes in Gpr88 knockout mice, and human genetic studies have reported association with psychosis. Here we tested the possibility that GPR88 contributes to Attention Deficit Hyperactivity Disorder (ADHD). In the mouse, we tested Gpr88 knockout mice in three behavioral paradigms, best translatable between rodents and humans, and found higher motor impulsivity and reduced attention together with the reported hyperactivity. Atomoxetine, a typical ADHD drug, reduced impulsivity in mutant mice. Conditional Gpr88 knockout mice in either D1R-type or D2R-type medium spiny neurons revealed distinct implications of the two receptor populations in waiting and stopping impulsivity. Thus, animal data demonstrate that deficient GPR88 activity causally promotes ADHD-like behaviors, and identify circuit mechanisms underlying GPR88-regulated impulsivity. In humans, we performed a family-based genetic study including 567 nuclear families with DSM-IV diagnosis of ADHD. There was a minor association for SNP rs2036212 with diagnosis, treatment response and cognition. A stronger association was found for SNP rs2809817 upon patient stratification, suggesting that the T allele is a risk factor when prenatal stress is involved. Human data therefore identify GPR88 variants associated with the disease, and highlight a potential role of life trajectories to modulate GPR88 function. Overall, animal and human data concur to suggest that GPR88 signaling should be considered a key factor for diagnostic and treatment of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Humanos , Camundongos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Corpo Estriado/metabolismo , Camundongos Knockout , Comportamento Impulsivo , Proteínas de Transporte/metabolismo , Fatores de Risco , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
Biol Psychiatry ; 91(12): 1039-1050, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654559

RESUMO

BACKGROUND: Alcohol acts as an addictive substance that may lead to alcohol use disorder. In humans, magnetic resonance imaging showed diverse structural and functional brain alterations associated with this complex pathology. Single magnetic resonance imaging modalities are used mostly but are insufficient to portray and understand the broad neuroadaptations to alcohol. Here, we combined structural and functional magnetic resonance imaging and connectome mapping in mice to establish brain-wide fingerprints of alcohol effects with translatable potential. METHODS: Mice underwent a chronic intermittent alcohol drinking protocol for 6 weeks before being imaged under medetomidine anesthesia. We performed open-ended multivariate analysis of structural data and functional connectivity mapping on the same subjects. RESULTS: Structural analysis showed alcohol effects for the prefrontal cortex/anterior insula, hippocampus, and somatosensory cortex. Integration with microglia histology revealed distinct alcohol signatures, suggestive of advanced (prefrontal cortex/anterior insula, somatosensory cortex) and early (hippocampus) inflammation. Functional analysis showed major alterations of insula, ventral tegmental area, and retrosplenial cortex connectivity, impacting communication patterns for salience (insula), reward (ventral tegmental area), and default mode (retrosplenial cortex) networks. The insula appeared as a most sensitive brain center across structural and functional analyses. CONCLUSIONS: This study demonstrates alcohol effects in mice, which possibly underlie lower top-down control and impaired hedonic balance documented at the behavioral level, and aligns with neuroimaging findings in humans despite the potential limitation induced by medetomidine sedation. This study paves the way to identify further biomarkers and to probe neurobiological mechanisms of alcohol effects using genetic and pharmacological manipulations in mouse models of alcohol drinking and dependence.


Assuntos
Alcoolismo , Conectoma , Alcoolismo/diagnóstico por imagem , Animais , Encéfalo , Etanol , Humanos , Imageamento por Ressonância Magnética/métodos , Medetomidina/farmacologia , Camundongos
9.
J Med Chem ; 64(16): 12397-12413, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34387471

RESUMO

The orphan receptor GPR88 has been implicated in a number of striatal-associated disorders, yet its endogenous ligand has not been discovered. We have previously reported that the amine functionality in the 2-AMPP-derived GPR88 agonists can be replaced with an amide (e.g., 4) without losing activity. Later, we have found that the amide can be replaced with a bioisosteric 1,3,4-oxadiazole with improved potency. Here, we report a further study of amide bioisosteric replacement with a variety of azoles containing three heteroatoms, followed by a focused structure-activity relationship study, leading to the discovery of a series of novel 1,4-disubstituted 1H-1,2,3-triazoles as GPR88 agonists. Collectively, our medicinal chemistry efforts have resulted in a potent, efficacious, and brain-penetrant GPR88 agonist 53 (cAMP EC50 = 14 nM), which is a suitable probe to study GPR88 functions in the brain.


Assuntos
Benzenoacetamidas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Triazóis/farmacologia , Animais , Benzenoacetamidas/síntese química , Benzenoacetamidas/farmacocinética , Barreira Hematoencefálica/metabolismo , Corpo Estriado/metabolismo , Desenho de Fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacocinética , Oxidiazóis/farmacologia , Receptores Acoplados a Proteínas G/deficiência , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacocinética
10.
Addict Biol ; 26(2): e12938, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32666571

RESUMO

Our previous studies consistently showed that MDMA-induced locomotor hyperactivity is dramatically increased by coadministration of ethanol (EtOH) in rats, indicating possible potentiation of MDMA abuse liability. Thus, we aimed to identify the brain region(s) and neuropharmacological substrates involved in the pharmacodynamics of this potentiation. We first showed that potentiation of locomotor activity by the combination of ip administration of EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) is delay sensitive and maximal when both drugs are injected simultaneously. Then, we used the 2-deoxyglucose quantitative autoradiography technique to assess the impact of EtOH, MDMA, or their combination on local cerebral metabolic rates for glucose (CMRglcs). We showed a specific metabolic activation in the ventral striatum (VS) under MDMA + EtOH versus MDMA or EtOH alone. We next tested if reversible (tetrodotoxin, TTX) or permanent (6-hydrodoxyopamine, 6-OHDA) lesion of the VS could affect locomotor response to MDMA and MDMA + EtOH. Finally, we blocked dopamine D1 or glutamate NMDA receptors in the VS and measured the effects of MDMA and MDMA + EtOH on locomotor activity. We showed that bilateral reversible inactivation (TTX) or permanent lesion (6-OHDA) of the VS prevented the potentiation by EtOH of MDMA-induced locomotor hyperactivity. Likewise, blockade of D1 or NMDA receptors in the VS also reduced the potentiation of MDMA locomotor activity by EtOH. These data indicate that dopamine D1 and glutamate NMDA receptor-driven mechanisms in the VS play a key role in the pharmacodynamics of EtOH-induced potentiation of the locomotor effects of MDMA.


Assuntos
Etanol/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Estriado Ventral/efeitos dos fármacos , Animais , Combinação de Medicamentos , Sinergismo Farmacológico , Etanol/administração & dosagem , Locomoção/efeitos dos fármacos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Oxidopamina/farmacologia , Ratos , Ratos Long-Evans , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tetrodotoxina/farmacologia
11.
Neurotherapeutics ; 17(1): 17-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919661

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.


Assuntos
Alcoolismo/genética , Encéfalo/fisiopatologia , Receptores Acoplados a Proteínas G/genética , Consumo de Bebidas Alcoólicas/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Recompensa , Transdução de Sinais
12.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346000

RESUMO

The orphan receptor GPR88 is highly expressed in D1 receptor (D1R)- and D2R-medium spiny neurons (MSNs) and has been associated to striatum-dependent functions in rodents. The total deletion of Gpr88 in mice was shown to decrease anxiety-like behaviors, increase stereotypies and locomotion, and impair motor coordination and motor learning. Knowing the opposing role of D1R- and D2R-MSNs, we here investigated the respective roles of GPR88 in the two MSN subtypes for these behaviors. To do so, we compared effects of a conditional Gpr88 gene knock-out (KO) in D1R-MSNs (D1R-Gpr88 mice) or D2R-MSNs (A2AR-Gpr88 mice) with effects of the total Gpr88 KO (CMV-Gpr88 mice). Overall, most phenotypes of CMV-Gpr88 mice were recapitulated in A2AR-Gpr88 mice, including reduced marble burying, increased social interactions, increased locomotor activity and stereotypies in the open field, and reduced motor coordination in the rotarod. Exceptions were the reduced habituation to the open field and reduced motor skill learning, which were observed in CMV-Gpr88 and D1R-Gpr88 mice, but not in A2AR-Gpr88 mice. D1R-Gpr88 mice otherwise showed no other phenotype in this study. Our data together show that GPR88 modulates the function of both D1R- and D2R-MSNs, and that GPR88 activity in these two neuron populations has very different and dissociable impacts on behavior. We suggest that GPR88 in D2R-MSNs shapes defensive and social behavior and contributes in maintaining the inhibition of basal ganglia outputs to control locomotion, stereotypies and motor coordination, while GPR88 in D1R-MSNs promotes novelty habituation and motor learning.


Assuntos
Afeto/fisiologia , Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Comportamento Exploratório/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Destreza Motora/fisiologia , Comportamento Social
13.
Sci Rep ; 9(1): 4044, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858487

RESUMO

While the contribution of Mu Opioid Receptors (MORs) to hedonic aspects of reward processing is well-established, the notion that these receptors may also regulate motivation to gain a reward, and possibly other related cognitive dimensions, has been less investigated. The prefrontal cortex (PFC) is a critical site for these processes. Our previous functional magnetic resonance imaging study found alterations of functional connectivity (FC) in reward/aversion networks in MOR knockout mice. Here we pursued voxelwise seed-based FC analyses using the same dataset with a focus on the PFC. We observed significant reduction of PFC FC in mutant mice, predominantly with the nucleus accumbens, supporting the notion of altered reward-driven top-down controls. We tested motivation for palatable food in a classical operant self-administration paradigm, and found delayed performance for mutant mice. We then evaluated motivational and cognitive abilities of MOR knockout mice in TouchScreen-based behavioral tests. Learning was delayed and stimulus/reward association was impaired, suggesting lower hedonic reward value and reduced motivation. Perseverative responses were decreased, while discriminatory behavior and attention were unchanged, indicative of increased inhibitory controls with otherwise intact cognitive performance. Together, our data suggest that MORs contribute to enhance reward-seeking and facilitate perseverative behaviors. The possibility that MOR blockade could reduce maladaptive compulsivity deserves further investigation in addiction and self-control disorder research.


Assuntos
Comportamento Animal , Motivação/genética , Córtex Pré-Frontal/metabolismo , Receptores Opioides mu/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Núcleo Accumbens , Córtex Pré-Frontal/patologia , Receptores Opioides mu/metabolismo , Recompensa , Autoadministração
14.
Addict Biol ; 24(1): 28-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29094432

RESUMO

Mu opioid receptors (MORs) are widely distributed throughout brain reward circuits and their role in drug and social reward is well established. Substantial evidence has implicated MOR and the endogenous opioid system in alcohol reward, but circuit mechanisms of MOR-mediated alcohol reward and intake behavior remain elusive, and have not been investigated by genetic approaches. We recently created conditional knockout (KO) mice targeting the Oprm1 gene in GABAergic forebrain neurons. These mice (Dlx-MOR KO) show a major MOR deletion in the striatum, whereas receptors in midbrain (including the Ventral Tegmental Area or VTA) and hindbrain are intact. Here, we compared alcohol-drinking behavior and rewarding effects in total (MOR KO) and conditional KO mice. Concordant with our previous work, MOR KO mice drank less alcohol in continuous and intermittent two-bottle choice protocols. Remarkably, Dlx-MOR KO mice showed reduced drinking similar to MOR KO mice, demonstrating that MOR in the forebrain is responsible for the observed phenotype. Further, alcohol-induced conditioned place preference was detected in control but not MOR KO mice, indicating that MOR is essential for alcohol reward and again, Dlx-MOR KO recapitulated the MOR KO phenotype. Taste preference and blood alcohol levels were otherwise unchanged in mutant lines. Together, our data demonstrate that MOR expressed in forebrain GABAergic neurons is essential for alcohol reward-driven behaviors, including drinking and place conditioning. Challenging the prevailing VTA-centric hypothesis, this study reveals another mechanism of MOR-mediated alcohol reward and consumption, which does not necessarily require local VTA MORs but rather engages striatal MOR-dependent mechanisms.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Neurônios GABAérgicos/metabolismo , Neostriado/metabolismo , Receptores Opioides mu/genética , Recompensa , Área Tegmentar Ventral/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Comportamento Animal , Mesencéfalo/metabolismo , Camundongos , Camundongos Knockout , Prosencéfalo/metabolismo , Rombencéfalo/metabolismo , Autoadministração
15.
Addict Biol ; 24(5): 908-920, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30022576

RESUMO

Alcohol use disorder is a chronic relapsing disease. Maintaining abstinence represents a major challenge for alcohol-dependent patients. Yet the molecular underpinnings of alcohol relapse remain poorly understood. In the present study, we investigated the potential role of the mammalian target of rapamycin complex 1 (mTORC1) in relapse to alcohol-seeking behavior by using the reinstatement of a previously extinguished alcohol conditioned place preference (CPP) response as a surrogate relapse paradigm. We found that mTORC1 is activated in the nucleus accumbens shell following alcohol priming-induced reinstatement of alcohol place preference. We further report that the selective mTORC1 inhibitor, rapamycin, abolishes reinstatement of alcohol place preference. Activation of mTORC1 initiates the translation of synaptic proteins, and we observed that reinstatement of alcohol CPP is associated with increased protein levels of one of mTORC1's downstream targets, collapsin response mediator protein-2 (CRMP2), in the nucleus accumbens. Importantly, the level of mTORC1 activation and CRMP2 expression positively correlate with the CPP score during reinstatement. Finally, we found that systemic administration of the CRMP2 inhibitor, lacosamide, attenuates alcohol priming-induced reinstatement of CPP. Together, our results reveal that mTORC1 and its downstream target, CRMP2, contribute to mechanisms underlying reinstatement of alcohol reward seeking. Our results could have important implications for the treatment of relapse to alcohol use and position the Food and Drug Administration approved drugs, rapamycin and lacosamide, for the treatment of alcohol use disorder.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Etanol/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Fármacos do Sistema Nervoso Central/farmacologia , Condicionamento Operante , Extinção Psicológica/efeitos dos fármacos , Lacosamida/farmacologia , Masculino , Camundongos Endogâmicos DBA , Proteínas do Tecido Nervoso/antagonistas & inibidores , Reforço Psicológico , Recompensa , Autoadministração
16.
Biol Psychiatry ; 84(3): 202-212, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29580570

RESUMO

BACKGOUND: Alcohol use disorder (AUD) is devastating and poorly treated, and innovative targets are actively sought for prevention and treatment. The orphan G protein-coupled receptor GPR88 is enriched in mesocorticolimbic pathways, and Gpr88 knockout mice show hyperactivity and risk-taking behavior, but a potential role for this receptor in drug abuse has not been examined. METHODS: We tested Gpr88 knockout mice for alcohol-drinking and -seeking behaviors. To gain system-level understanding of their alcohol endophenotype, we also analyzed whole-brain functional connectivity in naïve mice using resting-state functional magnetic resonance imaging. RESULTS: Gpr88 knockout mice showed increased voluntary alcohol drinking at both moderate and excessive levels, with intact alcohol sedation and metabolism. Mutant mice also showed increased operant responding and motivation for alcohol, while food and chocolate operant self-administration were unchanged. Alcohol place conditioning and alcohol-induced dopamine release in the nucleus accumbens were decreased, suggesting reduced alcohol reward in mutant mice that may partly explain enhanced alcohol drinking. Seed-based voxelwise functional connectivity analysis revealed significant remodeling of mesocorticolimbic centers, whose hallmark was predominant weakening of prefrontal cortex, ventral tegmental area, and amygdala connectional patterns. Also, effective connectivity from the ventral tegmental area to the nucleus accumbens and amygdala was reduced. CONCLUSIONS: Gpr88 deletion disrupts executive, reward, and emotional networks in a configuration that reduces alcohol reward and promotes alcohol seeking and drinking. The functional connectivity signature is reminiscent of alterations observed in individuals at risk for AUD. The Gpr88 gene, therefore, may represent a vulnerability/resilience factor for AUD, and a potential drug target for AUD treatment.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/fisiopatologia , Dopamina/metabolismo , Etanol/administração & dosagem , Receptores Acoplados a Proteínas G/deficiência , Alcoolismo/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Recompensa , Autoadministração
17.
Brain Connect ; 7(8): 526-540, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28882062

RESUMO

Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88-/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Receptores Acoplados a Proteínas G/deficiência , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal , Encéfalo/fisiopatologia , Mapeamento Encefálico , Imagem de Tensor de Difusão , Hipocampo/fisiopatologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Córtex Motor/fisiopatologia , Receptores Acoplados a Proteínas G/genética , Córtex Somatossensorial/fisiopatologia
18.
Biol Psychiatry ; 81(9): 778-788, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185645

RESUMO

BACKGROUND: Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS: We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS: Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS: Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Heroína/administração & dosagem , Motivação/fisiologia , Entorpecentes/administração & dosagem , Prosencéfalo/fisiologia , Receptores Opioides mu/fisiologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Feminino , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Morfina/administração & dosagem , Motivação/efeitos dos fármacos , Vias Neurais/fisiologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Receptores Opioides mu/genética , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
19.
Proc Natl Acad Sci U S A ; 113(41): 11603-11608, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671662

RESUMO

Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene's activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined resting-state fMRI diffusion tractography showed pronounced modifications of functional connectivity with only minor changes in structural pathways. Fine-grained resting-state fMRI mapping, graph theory, and intergroup comparison revealed Oprm1-specific hubs and captured a unique Oprm1 gene-to-network signature. Strongest perturbations occurred in connectional patterns of pain/aversion-related nodes, including the mu receptor-enriched habenula node. Our data demonstrate that the main receptor for morphine predominantly shapes the so-called reward/aversion circuitry, with major influence on negative affect centers.


Assuntos
Encéfalo/fisiologia , Conectoma , Deleção de Genes , Receptores Opioides mu/genética , Recompensa , Animais , Mapeamento Encefálico/métodos , Conectoma/métodos , Imagem de Tensor de Difusão , Genótipo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Modelos Neurológicos , Receptores Opioides mu/metabolismo
20.
J Neurosci ; 35(33): 11634-43, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290240

RESUMO

Addiction is thought to be a maladaptive form of learning and memory caused by drug-evoked aberrant synaptic plasticity. We previously showed that alcohol facilitates synaptic plasticity in the dorsomedial striatum (DMS), a brain region that drives goal-directed behaviors. The majority of DMS cells are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1Rs) or D2 receptors (D2Rs), which drive "Go" or "No-Go" behaviors, respectively. Here, we report that alcohol induces cell type-specific synaptic and structural plasticity in the DMS. Using mice that express a fluorescence marker to visualize D1R or D2R MSNs, we show that repeated cycles of systemic administration of alcohol or alcohol consumption induces a long-lasting increase in AMPAR activity specifically in DMS D1R but not in D2R MSNs. Importantly, we report that alcohol consumption increases the complexity of dendritic branching and the density of mature mushroom-shaped spines selectively in DMS D1R MSNs. Finally, we found that blockade of D1R but not D2R activity in the DMS attenuates alcohol consumption. Together, these data suggest that alcohol intake produces profound functional and structural plasticity events in a subpopulation of neurons in the DMS that control reinforcement-related learning. SIGNIFICANCE STATEMENT: Alcohol addiction is considered maladaptive learning and memory processes. Here we unraveled a long-lasting cellular mechanism that may contribute to the memory of alcohol-seeking behaviors. Specifically, we found that alcohol consumption produces a long-lasting enhancement of channel activity and persistent alterations of neuronal morphology in a part of the brain (DMS) that controls alcohol-drinking behaviors. Furthermore, we show that these alterations occur only in a subpopulation of neurons that positively control reward and reinforcement of drugs of abuse. Finally, we report that blocking the activity of this neuronal population reduces alcohol intake. As such synaptic and structural changes are the cellular hallmarks of learning and memory, and these neuroadaptations may drive the development of pathological heavy alcohol consumption.


Assuntos
Alcoolismo/patologia , Alcoolismo/fisiopatologia , Neurônios Dopaminérgicos/patologia , Neostriado/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Etanol , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/patologia , Neostriado/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA