Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Genome Med ; 11(1): 12, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819258

RESUMO

BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Mutação INDEL , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Síndrome de Smith-Magenis/genética , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Hipotonia Muscular/patologia , Síndrome de Smith-Magenis/patologia , Fatores de Transcrição/metabolismo , Adulto Jovem
3.
Nat Commun ; 10(1): 605, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723199

RESUMO

Nuclear envelopathies comprise a heterogeneous group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations affecting lamina-associated polypeptide 1 (LAP1) result in two discrete phenotypes of muscular dystrophy and progressive dystonia with cerebellar atrophy. We report 7 patients presenting at birth with severe progressive neurological impairment, bilateral cataract, growth retardation and early lethality. All the patients are homozygous for a nonsense mutation in the TOR1AIP1 gene resulting in the loss of both protein isoforms LAP1B and LAP1C. Patient-derived fibroblasts exhibit changes in nuclear envelope morphology and large nuclear-spanning channels containing trapped cytoplasmic organelles. Decreased and inefficient cellular motility is also observed in these fibroblasts. Our study describes the complete absence of both major human LAP1 isoforms, underscoring their crucial role in early development and organogenesis. LAP1-associated defects may thus comprise a broad clinical spectrum depending on the availability of both isoforms in the nuclear envelope throughout life.


Assuntos
Anormalidades Múltiplas/genética , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Mutação , Membrana Nuclear/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/metabolismo , Sequência de Bases , Criança , Pré-Escolar , Proteínas do Citoesqueleto , Análise Mutacional de DNA , Evolução Fatal , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Eur J Med Genet ; 59(2): 86-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26721323

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is usually detected late in pregnancies in embryos with large echogenic kidneys accompanied by oligohydramnios. Hundreds of private pathogenic variants have been identified in the large PKHD1 gene in various populations. Yet, because of the large size of the gene, segregation analysis of microsatellite polymorphic markers residing in the PKDH1 locus has commonly been utilized for prenatal diagnosis. Keeping in mind the limitations of this strategy, we utilized it for testing 7 families with affected fetuses or newborns, of which in 5 at least one parent was Ashkenazi, and identified that the same haplotype was shared by the majority of the Ashkenazi parents (7/9). This led us to suspect that they carry the same founder mutation. Whole Exome analysis of DNA from a fetus of one of the families detected an already known pathogenic variant c.3761_3762delCCinsG, an indel variant resulting in frameshift (p.Ala1254GlyfsX49). This variant was detected in 9 parents (5 families), of them 7 individuals were Ashkenazi and one Moroccan Jew who shared the same haplotype, and one Ashkenazi, who carried the same variant on a recombinant haplotype. Screening for this variant in 364 Ashkenazi individuals detected 2 carriers. These findings suggest that although c.3761_3762delCCinsG is considered one of the frequent variants detected in unrelated individuals, and was thought to have occurred independently on various haplotypes, it is in fact a founder mutation in the Ashkenazi population.


Assuntos
Análise Mutacional de DNA , Mutação da Fase de Leitura , Testes Genéticos , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Feminino , Feto/patologia , Humanos , Recém-Nascido , Rim/embriologia , Rim/patologia , Masculino , Repetições de Microssatélites , Rim Policístico Autossômico Recessivo/embriologia , Polimorfismo de Nucleotídeo Único
5.
J Clin Invest ; 125(11): 4295-304, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26485283

RESUMO

Ovarian development and maintenance are poorly understood; however, diseases that affect these processes can offer insights into the underlying mechanisms. XX female gonadal dysgenesis (XX-GD) is a rare, genetically heterogeneous disorder that is characterized by underdeveloped, dysfunctional ovaries, with subsequent lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism. Here, we report an extended consanguineous family of Palestinian origin, in which 4 females exhibited XX-GD. Using homozygosity mapping and whole-exome sequencing, we identified a recessive missense mutation in nucleoporin-107 (NUP107, c.1339G>A, p.D447N). This mutation segregated with the XX-GD phenotype and was not present in available databases or in 150 healthy ethnically matched controls. NUP107 is a component of the nuclear pore complex, and the NUP107-associated protein SEH1 is required for oogenesis in Drosophila. In Drosophila, Nup107 knockdown in somatic gonadal cells resulted in female sterility, whereas males were fully fertile. Transgenic rescue of Drosophila females bearing the Nup107D364N mutation, which corresponds to the human NUP107 (p.D447N), resulted in almost complete sterility, with a marked reduction in progeny, morphologically aberrant eggshells, and disintegrating egg chambers, indicating defective oogenesis. These results indicate a pivotal role for NUP107 in ovarian development and suggest that nucleoporin defects may play a role in milder and more common conditions such as premature ovarian failure.


Assuntos
Aquaporinas/fisiologia , Proteínas de Drosophila/fisiologia , Disgenesia Gonadal 46 XX/genética , Mutação de Sentido Incorreto , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ovário/patologia , Adolescente , Adulto , Animais , Animais Geneticamente Modificados , Aquaporinas/deficiência , Aquaporinas/genética , Consanguinidade , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Infertilidade Feminina/genética , Masculino , Camundongos , Modelos Moleculares , Morfogênese , Complexos Multiproteicos , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Oogênese/genética , Óvulo/patologia , Linhagem , Conformação Proteica
6.
Hum Mutat ; 36(9): 836-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077327

RESUMO

Genetic analysis of clinical phenotypes in consanguineous families is complicated by coinheritance of large DNA regions carrying independent variants. Here, we characterized a family with early onset cone-rod dystrophy (CRD) and muscular dystrophy. Homozygosity mapping (HM) followed by whole exome sequencing revealed a nonsense mutation, p.R270*, in ALMS1 and two novel potentially disease-causing missense variants, p.R1581C and p.Y2070C, in DYSF. ALMS1 and DYSF are genetically and physically linked on chromosome 2 in a genomic region suggested by HM and associated with Alström syndrome, which includes CRD, and with limb girdle muscular dystrophy, respectively. Affected family members lack additional systemic manifestations of Alström syndrome but exhibit mild muscular dystrophy. RNA-seq data did not reveal any significant variations in ALMS1 transcripts in the human retina. Our study thus implicates ALMS1 as a nonsyndromic retinal disease gene and suggests a potential role of variants in interacting cilia genes in modifying clinical phenotypes.


Assuntos
Consanguinidade , Proteínas de Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Proteínas/genética , Retinose Pigmentar/genética , Proteínas de Ciclo Celular , Análise Mutacional de DNA , Disferlina , Feminino , Estudos de Associação Genética , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Linhagem , Fenótipo , Retina/patologia , Retinose Pigmentar/diagnóstico
7.
Pediatr Dev Pathol ; 18(3): 251-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756389

RESUMO

Teratomas of the liver are exceedingly rare. Neuroblastoma is the most common, extracranial solid tumor of infancy. We describe the case of a 2-month-old, female infant who presented with an abdominal mass arising in the right lobe of the liver, and a severe coagulopathy, which necessitated cryoprecipitate infusion. Biopsy was interpreted as hepatoblastoma. Following resection, difficulty classifying the mass led to several consultations, and an eventual diagnosis of teratoma. During follow-up, the patient was diagnosed with right adrenal neuroblastoma, which, in retrospect, had been present before the hepatic resection. To our knowledge, these 2 tumors have never been reported together, or in combination with isolated hypofibrinogenemia.


Assuntos
Neoplasias das Glândulas Suprarrenais/patologia , Afibrinogenemia/congênito , Neoplasias Hepáticas/patologia , Neoplasias Primárias Múltiplas/patologia , Neuroblastoma/patologia , Teratoma/patologia , Afibrinogenemia/complicações , Feminino , Humanos , Lactente
8.
N Engl J Med ; 370(10): 943-949, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24597867

RESUMO

Premature ovarian failure is a major cause of female infertility. The genetic causes of this disorder remain unknown in most patients. Using whole-exome sequence analysis of a large consanguineous family with inherited premature ovarian failure, we identified a homozygous 1-bp deletion inducing a frameshift mutation in STAG3 on chromosome 7. STAG3 encodes a meiosis-specific subunit of the cohesin ring, which ensures correct sister chromatid cohesion. Female mice devoid of Stag3 are sterile, and their fetal oocytes are arrested at early prophase I, leading to oocyte depletion at 1 week of age.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Mutação , Proteínas Nucleares/genética , Insuficiência Ovariana Primária/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Infertilidade Feminina/genética , Camundongos , Linhagem , Coesinas
9.
Hum Mol Genet ; 22(1): 1-17, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22949511

RESUMO

Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.


Assuntos
Artrogripose/genética , Colágeno Tipo I/metabolismo , Genes Recessivos , Lisina/metabolismo , Mutação , Osteogênese Imperfeita/genética , Proteínas de Ligação a Tacrolimo/genética , Feminino , Humanos , Hidroxilação , Masculino , Processamento de Proteína Pós-Traducional
10.
PLoS One ; 7(3): e33412, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428046

RESUMO

BACKGROUND: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10-15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. METHODOLOGY/PRINCIPAL FINDINGS: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LOD(max) of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. CONCLUSIONS/SIGNIFICANCE: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.


Assuntos
Cromossomos Humanos Par 7/genética , Consanguinidade , Ligação Genética/genética , Loci Gênicos/genética , Insuficiência Ovariana Primária/genética , Árabes , Feminino , Humanos , Escore Lod , Repetições de Microssatélites/genética , Linhagem , Análise de Sequência de DNA
11.
Mol Genet Metab ; 104(4): 517-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22019070

RESUMO

The identification of disease causing mutation in patients with neurodegenerative disorders originating from small, non-consanguineous families is challenging. Three siblings were found to have ventriculomegaly at early gestation; postnatally, there was no acquisition of developmental milestones, and the muscles of the children were dystrophic. Plasma and CSF lactate levels were normal, but the activities of mitochondrial complex I and IV were markedly decreased. Using linkage analysis in the family, followed by whole exome sequencing of a single patient, we identified a pathogenic mutation in the AIFM1 gene which segregated with the disease state and was absent in 86 anonymous controls. This is the second report of a mutation in the AIFM1 gene, extending the clinical spectrum to include prenatal ventriculomegaly and underscores the importance of AIF for complex I assembly. In summary, linkage analysis followed by exome sequencing of a single patient is a cost-effective approach for the identification of disease causing mutations in small non-consanguineous families.


Assuntos
Fator de Indução de Apoptose/genética , Exoma , Ligação Genética , Hidrocefalia/diagnóstico por imagem , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Evolução Fatal , Feminino , Estudos de Associação Genética , Haplótipos , Humanos , Hidrocefalia/genética , Recém-Nascido , Masculino , Dados de Sequência Molecular , Gravidez , Análise de Sequência de DNA , Ultrassonografia Pré-Natal
12.
Am J Med Genet A ; 155A(11): 2801-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21990102

RESUMO

Diaphonospondylodysostosis (DSD) is a rare, recessively inherited, lethal skeletal dysplasia, characterized by severe spinal ossification, segmentation defects, and renal cystic dysplasia with nephrogenic rests. We hereby present three affected individuals: two children and a fetus from two unrelated East Jerusalem Arab-Muslim families. Whereas most fetuses die in utero or perinatally, one of the children survived to 15 months. Homozygosity mapping in the two families demonstrated a single common 3.87 Mb region on chromosome 7, ruling out previously known spondylocostal/spondylothoracic dysostosis loci. The 15 protein coding genes in the region were prioritized, and some were sequenced. A single, novel deleterious mutation, Q104X, was detected in the bone morphogenetic protein-binding endothelial regulator protein (BMPER) gene, recently reported to be mutated in other DSD patients [Funari et al., 2010]. The novel mutation we identified is an ancestral founder allele, as evidenced by a shared 440 SNP haplotype, and its frequency in the general Arab population is estimated to be <1:123. Our findings confirm loss of BMPER function as a cause of axial versus appendicular skeletal defects, and suggest that less deleterious mutations may be involved in milder axial skeleton abnormalities.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Par 17/genética , Mutação , Espondilose/genética , Árabes/genética , Mapeamento Cromossômico , Feminino , Efeito Fundador , Frequência do Gene , Aconselhamento Genético , Homozigoto , Humanos , Lactente , Recém-Nascido , Medição da Translucência Nucal , Linhagem , Polimorfismo de Nucleotídeo Único , Gravidez , Segundo Trimestre da Gravidez/genética , Radiografia , Espondilose/diagnóstico , Espondilose/diagnóstico por imagem
14.
Mol Vis ; 17: 3548-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22219650

RESUMO

PURPOSE: This study investigated the genetic basis for Usher syndrome type 1 (USH1) in four consanguineous Israeli Arab families. METHODS: Haplotype analysis for all known USH1 loci was performed in each family. In families for which haplotype analysis was inconclusive, we performed genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array. For mutation analysis, specific primers were used to PCR amplify the coding exons of the MYO7A, USH1C, and USH1G genes including intron-exon boundaries. Mutation screening was performed with direct sequencing. RESULTS: A combination of haplotype analysis and genome-wide homozygosity mapping indicated linkage to the USH1B locus in two families, USH1C in one family and USH1G in another family. Sequence analysis of the relevant genes (MYO7A, USH1C, and USH1G) led to the identification of pathogenic mutations in all families. Two of the identified mutations are novel (c.1135-1147dup in MYO7A and c.206-207insC in USH1G). CONCLUSIONS: USH1 is a genetically heterogenous condition. Of the five USH1 genes identified to date, USH1C and USH1G are the rarest contributors to USH1 etiology worldwide. It is therefore interesting that two of the four Israeli Arab families reported here have mutations in these two genes. This finding further demonstrates the unique genetic structure of the Israeli population in general, and the Israeli Arab population in particular, which due to high rates of consanguinity segregates many rare autosomal recessive genetic conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Árabes , Mutação , Miosinas/genética , Proteínas do Tecido Nervoso/genética , Síndromes de Usher/genética , Alelos , Sequência de Bases , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Mapeamento Cromossômico , Consanguinidade , Proteínas do Citoesqueleto , Análise Mutacional de DNA , Éxons , Feminino , Ligação Genética , Variação Genética , Haplótipos , Homozigoto , Humanos , Íntrons , Israel , Masculino , Dados de Sequência Molecular , Miosina VIIa , Linhagem , Síndromes de Usher/etnologia
15.
Am J Hum Genet ; 87(1): 101-9, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20602916

RESUMO

Age-related hearing loss is due to death over time, primarily by apoptosis, of hair cells in the inner ear. Studies of mutant genes responsible for inherited progressive hearing loss have suggested possible mechanisms for hair cell death, but critical connections between these mutations and the causes of progressive hearing loss have been elusive. In an Israeli kindred, dominant, adult-onset, progressive nonsyndromic hearing loss DFNA51 is due to a tandem inverted genomic duplication of 270 kb that includes the entire wild-type gene encoding the tight junction protein TJP2 (ZO-2). In the mammalian inner ear, TJP2 is expressed mainly in tight junctions, and also in the cytoplasm and nuclei. TJP2 expression normally decreases with age from embryonic development to adulthood. In cells of affected family members, TJP2 transcript and protein are overexpressed, leading to decreased phosphorylation of GSK-3beta and to altered expression of genes that regulate apoptosis. These results suggest that TJP2- and GSK-3beta-mediated increased susceptibility to apoptosis of cells of the inner ear is the mechanism for adult-onset hearing loss in this kindred and may serve as one model for age-related hearing loss in the general population.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Perda Auditiva/genética , Proteínas de Membrana/genética , Junções Íntimas/metabolismo , Animais , Orelha Interna/embriologia , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Duplicação Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Perda Auditiva/metabolismo , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Linhagem , Fosforilação , Proteína da Zônula de Oclusão-2
16.
Am J Hum Genet ; 86(2): 254-61, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137777

RESUMO

Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Anormalidades do Olho/complicações , Cardiopatias Congênitas/complicações , Anormalidades Musculoesqueléticas/complicações , Mutação/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Pré-Escolar , Mapeamento Cromossômico , Anormalidades do Olho/genética , Feminino , Inativação Gênica , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Anormalidades Musculoesqueléticas/genética , Proteínas de Transferência de Fosfolipídeos/química , Síndrome
17.
Hum Mol Genet ; 18(18): 3462-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19542096

RESUMO

Arthrogryposis multiplex congenita (AMC) is a group of disorders characterized by congenital joint contractures caused by reduced fetal movements. AMC has an incidence of 1 in 3000 newborns and is genetically heterogeneous. We describe an autosomal recessive form of myogenic AMC in a large consanguineous family. The disease is characterized by bilateral clubfoot, decreased fetal movements, delay in motor milestones, then progressive motor decline after the first decade. Genome-wide linkage analysis revealed a single locus on chromosome 6q25 with Z(max) = 3.55 at theta = 0.0 and homozygosity of the polymorphic markers at this locus in patients. Homozygous A to G nucleotide substitution of the conserved AG splice acceptor site at the junction of intron 136 and exon 137 of the SYNE-1 gene was found in patients. This mutation results in an aberrant retention of intron 136 of SYNE-1 RNA leading to premature stop codons and the lack of the C-terminal transmembrane domain KASH of nesprin-1, the SYNE-1 gene product. Mice lacking the KASH domain of nesprin-1 display a myopathic phenotype similar to that observed in patients. Altogether, these data strongly suggest that the splice site mutation of SYNE-1 gene found in the family is responsible for AMC. Recent reports have shown that mutations of the SYNE-1 gene might be responsible for autosomal recessive adult onset cerebellar ataxia. These data indicate that mutations of nesprin-1 which interacts with lamin A/C may lead to at least two distinct human disease phenotypes, myopathic or neurological, a feature similar to that found in laminopathies.


Assuntos
Artrogripose/genética , Mutação , Proteínas do Tecido Nervoso/genética , Lâmina Nuclear/metabolismo , Proteínas Nucleares/genética , Sequência de Aminoácidos , Animais , Artrogripose/metabolismo , Sequência de Bases , Células Cultivadas , Cromossomos Humanos Par 6 , Proteínas do Citoesqueleto , Suscetibilidade a Doenças , Feminino , Genes Recessivos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Linhagem
18.
Am J Hum Genet ; 84(1): 80-4, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19110212

RESUMO

The spondylo-meta-epiphyseal dysplasia [SMED] short limb-hand type [SMED-SL] is a rare autosomal-recessive disease, first reported by Borochowitz et al. in 1993.(1) Since then, 14 affected patients have been reported.(2-5) We diagnosed 6 patients from 5 different consanguineous Arab Muslim families from the Jerusalem area with SMED-SL. Additionally, we studied two patients from Algerian and Pakistani ancestry and the parents of the first Jewish patients reported.(1) Using a homozygosity mapping strategy, we located a candidate region on chromosome 1q23 spanning 2.4 Mb. The position of the Discoidin Domain Receptor 2 (DDR2) gene within the candidate region and the similarity of the ddr2 knockout mouse to the SMED patients' phenotype prompted us to study this gene(6). We identified three missense mutations c.2254 C > T [R752C], c. 2177 T > G [I726R], c.2138C > T [T713I] and one splice site mutation [IVS17+1g > a] in the conserved sequence encoding the tyrosine kinase domain of the DDR2 gene. The results of this study will permit an accurate early prenatal diagnosis and carrier screening for families at risk.


Assuntos
Calcinose/genética , Predisposição Genética para Doença , Deformidades Congênitas da Mão/genética , Osteocondrodisplasias/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Sequência de Aminoácidos , Calcinose/enzimologia , Cromossomos Humanos Par 1/genética , Consanguinidade , Receptores com Domínio Discoidina , Deformidades Congênitas da Mão/enzimologia , Humanos , Dados de Sequência Molecular , Osteocondrodisplasias/enzimologia , Adulto Jovem
19.
Am J Med Genet B Neuropsychiatr Genet ; 147B(8): 1547-53, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18777518

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a heterogeneous highly heritable disorder which has recently been described to be comorbid in obese subjects. This study investigated phenotype/genotype associations in a consanguineous family with genetic obesity due to the melanocortin-4-receptor (MC4R) (C271R) mutation. MC4R deficiency disrupts hunger/satiety regulation resulting in abnormal eating behaviors. To date, the behavioral/psychiatric characteristics of MC4R deficiency have not been described except for a possible association with Binge Eating Disorder. Twenty-nine subjects of a family known to carry the MC4R (C271R) mutation, were genotyped for the mutation and underwent extensive evaluations in search for physical/psychiatric phenotype characteristics. Subjects originated from proband nuclear families with morbid obese children (BMI percentile > 97%). All probands were homozygous for the MC4R (C271R) mutation. ADHD prevalence was higher than expected only in the groups carrying the homozygous or heterozygous mutation (P = 0.00057, 0.0028, respectively). An obvious difference was observed between the homozygous group and the rest of the family in terms of obesity: homozygous subjects had childhood morbid obesity whereas heterozygous subjects included lean, normal weight and later onset obese subjects. A significant difference was found in ADHD prevalence between the homozygous MC4R (C271R) group (80%) and the rest of the family (22%) (P = 0.033) and a significant trend was found between ADHD prevalence and the number of MC4R (C271R) alleles (P = 0.0267). We conclude that in our sample, the MC4R (C271R) mutation causing obesity, is in association with ADHD. Identifying specific subgroups in which the comorbidity of obesity and ADHD occur may contribute to the understanding of the underlying molecular mechanisms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Expressão Gênica , Obesidade/genética , Receptor Tipo 4 de Melanocortina/deficiência , Adolescente , Alelos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Criança , Feminino , Predisposição Genética para Doença , Genótipo , Heterozigoto , Homozigoto , Humanos , Entrevistas como Assunto , Masculino , Núcleo Familiar , Pais , Linhagem , Prevalência , Receptor Tipo 4 de Melanocortina/genética , Irmãos
20.
J Am Acad Dermatol ; 59(1): 79-85, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18410979

RESUMO

BACKGROUND: The association of cutaneous hyperpigmented, hypertrichotic, and indurated patches associated with hearing loss, short stature, cardiac anomalies, hepatosplenomegaly, scrotal masses, and hypogonadism has not, to our knowledge, been previously recognized as a disease entity. OBJECTIVE: We describe 10 patients with the above-mentioned findings. METHODS: Patients were clinically examined and extensive laboratory evaluation was performed. RESULTS: We describe 10 patients from 6 Arab consanguineous families with hyperpigmented, hypertrichotic, and indurated cutaneous patches involving the middle and lower parts of their bodies. In addition, patients displayed short stature, sensorineural hearing loss, cardiac anomalies, hepatosplenomegaly, and scrotal masses. Laboratory evaluation revealed growth hormone deficiency and hypergonadotropic hypogonadism with azoospermia. Cutaneous histopathologic examination showed hyperpigmentation of the basal layer with seborrheic-keratosis-like acanthosis, histiocytic infiltration, and a perivascular mononuclear infiltrate with plasma cells and mast cells throughout the dermis and subcutaneous fat. Comparison with several patients, recently reported in the medical literature, with similar cutaneous findings is made. LIMITATIONS: Laboratory evaluation in some patients was incomplete because of lack of cooperation. CONCLUSIONS: We suggest that our patients represent a novel multisystemic autosomal recessive inherited disorder. We call this constellation of symptoms the "H syndrome."


Assuntos
Perda Auditiva Neurossensorial/diagnóstico , Hiperpigmentação/diagnóstico , Hipertricose/diagnóstico , Dermatopatias Genéticas/diagnóstico , Adolescente , Adulto , Biópsia , Consanguinidade , Feminino , Fibrose , Doenças dos Genitais Masculinos/diagnóstico , Cardiopatias Congênitas/diagnóstico , Hepatomegalia/diagnóstico , Humanos , Linfonodos/patologia , Masculino , Fenótipo , Pele/patologia , Esplenomegalia/diagnóstico , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA