Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2309412120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983500

RESUMO

Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.


Assuntos
Orthobunyavirus , Tospovirus , Orthobunyavirus/genética , RNA Viral/genética , Tospovirus/genética , Genoma Viral/genética , Vírion/genética
2.
Insect Biochem Mol Biol ; 149: 103843, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113709

RESUMO

Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.


Assuntos
Tisanópteros , Tospovirus , Animais , Feminino , Flores , Masculino , Doenças das Plantas , Plantas , Proteoma/metabolismo , Proteômica , Glândulas Salivares , Tisanópteros/metabolismo , Tospovirus/fisiologia
4.
BMC Biol ; 18(1): 142, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33070780

RESUMO

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Assuntos
Genoma de Inseto , Características de História de Vida , Tisanópteros/fisiologia , Transcriptoma , Animais , Produtos Agrícolas , Comportamento Alimentar , Cadeia Alimentar , Imunidade Inata/genética , Percepção , Filogenia , Reprodução/genética , Tisanópteros/genética , Tisanópteros/imunologia
5.
Plant Physiol ; 182(2): 882-891, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818905

RESUMO

Citrus greening or Huanglongbing (HLB) is caused by the phloem-limited intracellular Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas). HLB-infected citrus phloem cells undergo structural modifications that include cell wall thickening, callose and phloem protein induction, and cellular plugging. However, very little is known about the intracellular mechanisms that take place during CLas cell-to-cell movement. Here, we show that CLas movement through phloem pores of sweet orange (Citrus sinensis) and grapefruit (Citrus paradisi) is carried out by the elongated form of the bacteria. The round form of CLas is too large to move, but can change its morphology to enable its movement. CLas cells adhere to the plasma membrane of the phloem cells specifically adjacent to the sieve pores. Remarkably, CLas was present in both mature sieve element cells and nucleated nonsieve element cells. The sieve plate plugging structures of host plants were shown to have different composition in different citrus tissues. Callose deposition was the main plugging mechanism in the HLB-infected flush, where it reduced the open space of the pores. In the roots, pores were surrounded by dark extracellular material, with very little accumulation of callose. The expression of CALLOSE SYNTHASE7 and PHLOEM PROTEIN2 genes was upregulated in the shoots, but downregulated in root tissues. In seed coats, no phloem occlusion was observed, and CLas accumulated to high levels. Our results provide insight into the cellular mechanisms of Gram-negative bacterial cell-to-cell movement in plant phloem.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citrus/microbiologia , Glucosiltransferases/metabolismo , Liberibacter/metabolismo , Floema/microbiologia , Doenças das Plantas/microbiologia , Lectinas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/imunologia , Glucanos/metabolismo , Glucosiltransferases/genética , Liberibacter/patogenicidade , Microscopia Eletrônica de Transmissão , Floema/genética , Floema/metabolismo , Floema/ultraestrutura , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/microbiologia , Lectinas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Sementes/genética , Sementes/metabolismo
6.
Sci Rep ; 9(1): 17157, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748622

RESUMO

There is increasing evidence that acylsugars deter insect pests and plant virus vectors, including the western flower thrips (WFT), Frankliniella occidentalis (Pergande), vector of tomato spotted wilt virus (TSWV). Acylsugars are sugar-polyesters composed of saturated, un-saturated, and variously branched short and long chain fatty acids (FAs) esterified to a glucose (acylglucose) or sucrose (acylsucrose) moiety. We sought to understand how acylsucrose amount and composition of associated FA profiles interacted to mediate resistance to WFT oviposition and TSWV inoculation on tomato leaves. Towards this goal, we examined WFT oviposition and TSWV inoculation behavior on tomato lines bred to exude varying amounts of acylsucrose in association with diverse FA profiles. Our data show that as acylsucrose amounts increased, WFT egg-laying (oviposition) decreased and TSWV inoculation was suppressed. Western flower thrips also responded to FA profiles that included iC4, iC11, nC12 and nC10 FA. These findings support improving acylsugar-mediated resistance against WFT by breeding tomatoes exuding greater amounts of acylsucrose associated with specific FA profiles. We show that increasing acylsucrose amount output by type IV trichomes and selecting for particular FA profiles through advanced breeding profoundly affects WFT behavior in ways that benefit management of WFT as direct pests and as TSWV vectors.


Assuntos
Flores/virologia , Insetos Vetores/virologia , Oviposição/fisiologia , Folhas de Planta/virologia , Solanum lycopersicum/virologia , Tisanópteros/virologia , Tospovirus/patogenicidade , Animais , Ácidos Graxos/metabolismo , Feminino , Flores/metabolismo , Insetos/virologia , Solanum lycopersicum/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Sacarose/metabolismo , Tricomas/virologia
7.
PLoS One ; 13(7): e0201583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30063755

RESUMO

Tomatoes (Solanum lycopersicum L.) have been bred to exude higher amounts or different types of the specialized plant metabolites, acylsugars, from type IV trichomes. Acylsugars are known to deter several herbivorous insect pests, including the western flower thrips (WFT), Frankliniella occidentalis (Pergande); however, all previous studies investigated the effect of acylsugars on leaves, or acylsugar extracts obtained from leaves. In spite of the WFT predilection for flowers, there is a gap in knowledge about flower defenses against thrips damage. This is especially important in light of their capacity to acquire and inoculate viruses in the genus Orthotospovirus, such as Tomato spotted wilt orthotospovirus (TSWV), in flowers. Therefore, we turned our attention to assessing thrips oviposition differences on flowers of 14 entries, including 8 interspecific hybrids, 5 tomato lines bred for specific acylsugar-related characteristics (type IV trichome densities, acylsugar amount, sugar moiety and fatty acid profile), and a fresh market tomato hybrid, Mt. Spring, which only produces trace amounts of acylsugars. Our results show that the density of the acylsugar droplet bearing type IV trichomes is greatest on sepals, relative to other flower structures, and accordingly, WFT avoids oviposition on sepals in favor of trichome-sparse petals. In concordance with past studies, acylsugar amount was the most important acylsugar-related characteristic suppressing WFT oviposition. Certain acylsugar fatty acids, specifically i-C5, i-C9 and i-C11, were also significantly associated with changes in WFT oviposition. These results support continued breeding efforts to increase acylsugar amounts and explore modifications of fatty acid profile and their roles in deterring thrips oviposition. The finding that acylsugar production occurs and reduces thrips oviposition in tomato flowers will be important in efforts to use acylsugar-mediated resistance to reduce incidence of orthotospoviruses such as TSWV in tomato by deterring virus transmission and development of thrips vector populations in the crop.


Assuntos
Quimera/metabolismo , Ácidos Graxos/metabolismo , Flores , Melhoramento Vegetal , Solanum lycopersicum , Açúcares/metabolismo , Tisanópteros , Animais , Metabolismo dos Carboidratos/fisiologia , Cruzamentos Genéticos , Flores/metabolismo , Herbivoria , Insetos/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oviposição/genética , Controle Biológico de Vetores , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas , Açúcares/análise , Açúcares/farmacologia , Tisanópteros/genética , Tisanópteros/metabolismo
8.
J Insect Physiol ; 72: 1-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445662

RESUMO

Diaprepes abbreviatus is an important pest that causes extensive damage to citrus in the USA. Analysis of an expressed sequence tag (EST) library from the digestive tract of larvae and adult D. abbreviatus identified cathepsins as major putative digestive enzymes. One class, sharing amino acid sequence identity with cathepsin L's, was the most abundant in the EST dataset representing 14.4% and 3.6% of the total sequences in feeding larvae and adults, respectively. The predominant cathepsin (Da-CTSL1) among this class was further studied. Three dimensional modeling of the protein sequence showed that the mature Da-CTSL1 protein folds into an expected cathepsin L structure producing a substrate binding pocket with appropriate positioning of conserved amino acid residues. A full-length cDNA was obtained and the proCTSL1 encoding sequence was expressed in Rosetta™ Escherichia coli cells engineered to express tRNAs specific for eukaryotic codon usage. The Da-CTSL1 was expressed as a fusion protein with GST and His6 tags and purified in the presence of 1% Triton X-100 by Ni-NTA affinity and size exclusion chromatography. Recombinant mature Da-CTSL1 (23 KDa) exhibits optimal activity at pH 8, rather than at acidic pH that was shown of all previously characterized cathepsins L. Substrate specificity supports the hypothesis that Da-CTSL1 is a unique basic cathepsin L and protease inhibitor studies also suggest unique activity, unlike other characterized acidic cathepsin Ls. This paper describes for the first time a prokaryotic expression system for the production of a functional eukaryotic cathepsin L1 from larval gut of D. abbreviatus.


Assuntos
Catepsina L/metabolismo , Trato Gastrointestinal/enzimologia , Gorgulhos/enzimologia , Sequência de Aminoácidos , Animais , Catepsina L/genética , Clonagem Molecular , Concentração de Íons de Hidrogênio , Larva/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA