RESUMO
Since early 2020, several SARS-CoV-2 variants of concern (VOCs) continue to emerge, evading waning antibody mediated immunity produced by the current Spike-alone based COVID-19 vaccines. This caused a prolonged and persistent COVID-19 pandemic that is going to enter its fifth year. Thus, the need remains for innovative next generation vaccines that would incorporate protective Spike-derived B-cell epitopes that resist immune evasion. Towards that goal, in this study we (i) Screened the sequences of Spike among many VOCs and identified conserved and non-conserved linear B-cell epitopes; (ii) Compared titers and neutralization antibodies specific to these conserved and non-conserved B-cell epitopes from serum of symptomatic and asymptomatic COVID-19 patients that were exposed to multiple VOCs across the 5-year COVID-19 pandemic, and (iii) Compared protective efficacy of conserved versus non-conserved B-cell epitopes against the most pathogenic Delta variant in a "humanized" ACE-2/HLA transgenic mouse model. We found robust conserved B-cell epitope-specific antibody titers and neutralization in sera from asymptomatic COVID-19 patients. In contrast, sera from symptomatic patients contained weaker antibody responses specific to conserved B-cell epitopes. A multi-epitope COVID-19 vaccine that incorporated the conserved B-cell epitopes, but not the non-conserved B-cell epitopes, significantly protected the ACE2/HLA transgenic mice against infection and COVID-19 like symptoms caused by the Delta variant. These findings underscore the importance of conserved B-cell epitopes in generating robust protective immunity against severe COVID-19 symptoms caused by various VOCs, providing valuable insights for the development of broad-spectrum next generation Coronavirus vaccines capable of conferring cross-variant protective immunity.
RESUMO
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.
Assuntos
Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Ribonucleotídeo Redutases , Animais , Feminino , Cobaias , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL11/imunologia , Quimiocina CXCL11/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/virologia , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Células T de Memória/imunologia , Ribonucleotídeo Redutases/metabolismo , Vacinação , Vagina/virologia , Vagina/imunologiaRESUMO
Background: Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods: This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results: Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions: These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Assuntos
COVID-19 , Resfriado Comum , Humanos , SARS-CoV-2 , Antígeno CTLA-4 , Linfócitos T CD8-Positivos , Células T de Memória , Receptor Celular 2 do Vírus da Hepatite A , Receptor de Morte Celular Programada 1 , Linfócitos T CD4-Positivos , EpitoposRESUMO
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
RESUMO
Background: The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). Conclusion: A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteção Cruzada , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito T/genética , Pandemias , SARS-CoV-2/genéticaRESUMO
SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.
Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Cricetinae , Humanos , Camundongos , Animais , Mesocricetus , Receptor para Produtos Finais de Glicação Avançada/genética , Síndrome de COVID-19 Pós-Aguda , Camundongos Transgênicos , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , PulmãoRESUMO
IMPORTANCE: Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL11/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos , Pulmão/imunologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus , Modelos Animais de DoençasRESUMO
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes latency in sensory neurons of the dorsal root ganglia (DRG). Intermittent virus reactivation from latency and shedding in the vaginal mucosa (VM) causes recurrent genital herpes. While T-cells appear to play a role in controlling virus reactivation and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T-cells into DRG and VM tissues remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-1 RR2 protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 (AAV-8) expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus shedding in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ TRM and TEM cells in reducing virus reactivation shedding and the severity of recurrent genital herpes and propose the novel prime/pull vaccine strategy to protect against recurrent genital herpes.
RESUMO
Vaginal mucosa-resident anti-viral effector memory B- and T cells appeared to play a crucial role in protection against genital herpes. However, how to mobilize such protective immune cells into the vaginal tissue close to infected epithelial cells remains to be determined. In the present study, we investigate whether and how, CCL28, a major mucosal-associated chemokine, mobilizes effector memory B- and T cells in leading to protecting mucosal surfaces from herpes infection and disease. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). We found the presence of significant frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10 receptor, in herpes-infected asymptomatic (ASYMP) women compared to symptomatic (SYMP) women. A significant amount of the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP B6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected asymptomatic mice. In contrast, compared to wild-type (WT) B6 mice, the CCL28 knockout (CCL28(-/-)) mice: (i) Appeared more susceptible to intravaginal infection and re-infection with HSV-2; (ii) Exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. The results imply a critical role of the CCL28/CCR10 chemokine axis in the mobilization of anti-viral memory B and T cells within the VM to protect against genital herpes infection and disease.
RESUMO
Background: The Coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of SARS-CoV-2 infections has decreased significantly; the long-term outlook of COVID-19 remains a serious cause of high death worldwide; with the mortality rate still surpassing even the worst mortality rates recorded for the influenza viruses. The continuous emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, have prolonged the COVID-19 pandemic and outlines the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: In the present study, we designed a multi-epitope-based Coronavirus vaccine that incorporated B, CD4+, and CD8+ T cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-Coronavirus vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The Pan-Coronavirus vaccine: (i) is safe; (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells; and (iii) provides robust protection against virus replication and COVID-19-related lung pathology and death caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron (B.1.1.529). Conclusions: A multi-epitope pan-Coronavirus vaccine bearing conserved human B and T cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that cleared the virus, and reduced COVID-19-related lung pathology and death caused by multiple SARS-CoV-2 VOCs.
RESUMO
Four major mucosal-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, play an important role in protecting mucosal surfaces from infectious pathogens. However, their role in protection against genital herpes remains to be fully explored. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). In this study, we investigated the role of the CCL28/CCR10 chemokine axis in mobilizing protective antiviral B and T cell subsets into the VM site of herpes infection. We report a significant increase in the frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10, in herpes-infected asymptomatic (ASYMP) women compared with symptomatic women. Similarly, a significant increase in the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP C57BL/6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected ASYMP mice. Inversely, compared with wild-type C57BL/6 mice, the CCL28 knockout (CCL28-/-) mice (1) appeared to be more susceptible to intravaginal infection and reinfection with HSV type 2, and (2) exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. These findings suggest a critical role of the CCL28/CCR10 chemokine axis in the mobilization of antiviral memory B and T cells within the VM to protect against genital herpes infection and disease.
Assuntos
Herpes Genital , Humanos , Feminino , Camundongos , Animais , Antivirais/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos , Herpesvirus Humano 2 , Mucosa , Fatores de Restrição Antivirais , Receptores CCR10/metabolismo , Quimiocinas CC/metabolismo , Receptores de Hialuronatos/metabolismoRESUMO
Unvaccinated COVID-19 patients display a large spectrum of symptoms, ranging from asymptomatic to severe symptoms, the latter even causing death. Distinct Natural killer (NK) and CD4+ and CD8+ T cells immune responses are generated in COVID-19 patients. However, the phenotype and functional characteristics of NK cells and T-cells associated with COVID-19 pathogenesis versus protection remain to be elucidated. In this study, we compared the phenotype and function of NK cells SARS-CoV-2-specific CD4+ and CD8+ T cells in unvaccinated symptomatic (SYMP) and unvaccinated asymptomatic (ASYMP) COVID-19 patients. The expression of senescent CD57 marker, CD45RA/CCR7differentiation status, exhaustion PD-1 marker, activation of HLA-DR, and CD38 markers were assessed on NK and T cells from SARS-CoV-2 positive SYMP patients, ASYMP patients, and Healthy Donors (HD) using multicolor flow cytometry. We detected significant increases in the expression levels of both exhaustion and senescence markers on NK and T cells from SYMP patients compared to ASYMP patients and HD controls. In SYMP COVID-19 patients, the T cell compartment displays several alterations involving naive, central memory, effector memory, and terminally differentiated T cells. The senescence CD57 marker was highly expressed on CD8+ TEM cells and CD8+ TEMRA cells. Moreover, we detected significant increases in the levels of pro-inflammatory TNF-α, IFN-γ, IL-6, IL-8, and IL-17 cytokines from SYMP COVID-19 patients, compared to ASYMP COVID-19 patients and HD controls. The findings suggest exhaustion and senescence in both NK and T cell compartment is associated with severe disease in critically ill COVID-19 patients.
RESUMO
The development of vaccines against herpes simplex virus type 1 and type 2 (HSV1 and HSV-2) is an important goal for global health. In this review we reexamined (i) the status of ocular herpes vaccines in clinical trials; and (ii) discusses the recent scientific advances in the understanding of differential immune response between HSV infected asymptomatic and symptomatic individuals that form the basis for the new combinatorial vaccine strategies targeting HSV; and (iii) shed light on our novel "asymptomatic" herpes approach based on protective immune mechanisms in seropositive asymptomatic individuals who are "naturally" protected from recurrent herpetic diseases. We previously reported that phenotypically and functionally distinct HSV-specific memory CD8+ T cell subsets in asymptomatic and symptomatic HSV-infected individuals. Moreover, a better protection induced following a prime/pull vaccine approach that consists of first priming anti-viral effector memory T cells systemically and then pulling them to the sites of virus reactivation (e.g., sensory ganglia) and replication (e.g., eyes and vaginal mucosa), following mucosal administration of vectors expressing T cell-attracting chemokines. In addition, we reported that a combination of prime/pull vaccine approach with approaches to reverse T cell exhaustion led to even better protection against herpes infection and disease. Blocking PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint pathways helped in restoring the function of antiviral HSV-specific CD8+ T cells in latently infected ganglia and increased efficacy and longevity of the prime/pull herpes vaccine. We discussed that a prime/pull vaccine strategy that use of asymptomatic epitopes, combined with immune checkpoint blockade would prove to be a successful herpes vaccine approach.
Assuntos
Herpes Simples , Herpesvirus Humano 1 , Vacinas , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Feminino , Humanos , Vacinas/metabolismoRESUMO
This paper presents a molecular characterization of the interaction between the SARS-CoV-2 envelope (E) protein and TLR2. We demonstrated that the E protein, both as a recombinant soluble protein and as a native membrane protein associated with SARS-CoV-2 viral particles, interacts physically with the TLR2 receptor in a specific and dose-dependent manner. Furthermore, we showed that the specific interaction with the TLR2 pathway activates the NF-κB transcription factor and stimulates the production of the CXCL8 inflammatory chemokine. In agreement with the importance of NF-κB in the TLR signaling pathway, we showed that the chemical inhibition of this transcription factor leads to significant inhibition of CXCL8 production, while the blockade of the P38 and ERK1/2 MAP kinases only results in partial CXCL8 inhibition. Overall, our findings propose the envelope (E) protein as a novel molecular target for COVID-19 interventions: either (i) by exploring the therapeutic effect of anti-E blocking/neutralizing antibodies in symptomatic COVID-19 patients, or (ii) as a promising non-spike SARS-CoV-2 antigen candidate for inclusion in the development of next-generation prophylactic vaccines against COVID-19 infection and disease.
Assuntos
COVID-19 , Proteínas do Envelope de Coronavírus , SARS-CoV-2 , Receptor 2 Toll-Like , Proteínas do Envelope de Coronavírus/metabolismo , Humanos , Interleucina-8 , NF-kappa B , Receptor 2 Toll-Like/metabolismoRESUMO
Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity seen in asymptomatic (ASYMP) individuals is heavily explored, the role of B cells is less investigated. In the present study, we evaluated whether B cells are associated with protective immunity against recurrent ocular herpes. The frequencies of circulating HSV-specific memory B cells and of memory follicular helper T cells (CD4+ Tfh cells), which help B cells produce antibodies, were compared between HSV-1-infected SYMP and ASYMP individuals. The levels of IgG/IgA and neutralizing antibodies were compared in SYMP and ASYMP individuals. We found that (i) the ASYMP individuals had increased frequencies of HSV-specific CD19+CD27+ memory B cells, and (ii) high frequencies of HSV-specific switched IgG+CD19+CD27+ memory B cells detected in ASYMP individuals were directly proportional to high frequencies of CD45R0+CXCR5+CD4+ memory Tfh cells. However, no differences were detected in the level of HSV-specific IgG/IgA antibodies in SYMP and ASYMP individuals. Using the UV-B-induced HSV-1 reactivation mouse model, we found increased frequencies of HSV-specific antibody-secreting plasma HSV-1 gD+CD138+ B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. In contrast, no significant differences in the frequencies of B cells were found in the cornea, spleen, and bone-marrow. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from symptomatic recurrent ocular herpes. IMPORTANCE Reactivation of herpes simplex virus 1 (HSV-1) from latently infected neurons of the trigeminal ganglia (TG) leads to blinding recurrent herpetic disease in symptomatic (SYMP) individuals. Although the role of T cells in herpes immunity against blinding recurrent herpetic disease is heavily explored, the role of B cells is less investigated. In the present study, we found that in both asymptomatic (ASYMP) individuals and ASYMP mice, there were increased frequencies of HSV-specific memory B cells that were directly proportional to high frequencies of memory Tfh cells. Moreover, following UV-B-induced reactivation, we found increased frequencies of HSV-specific antibody-secreting plasma B cells within the TG and circulation of ASYMP mice compared to those of SYMP mice. Our findings suggest that circulating antibody-producing HSV-specific memory B cells recruited locally to the TG may contribute to protection from recurrent ocular herpes.
Assuntos
Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Células B de Memória , Reinfecção , Animais , Antígenos CD19/imunologia , Imunidade/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Ceratite Herpética/imunologia , Células B de Memória/imunologia , Células B de Memória/virologia , Camundongos , Reinfecção/imunologia , Reinfecção/virologia , Gânglio Trigeminal/virologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Ativação Viral/imunologiaRESUMO
Herpes simplex virus 1 (HSV-1) infects the cornea and caused blinding ocular disease. In the present study, we evaluated whether and how a novel engineered version of fibroblast growth factor-1 (FGF-1), designated as TTHX1114, would reduce the severity of HSV-1-induced and recurrent ocular herpes in the mouse model. The efficacy of TTHX1114 against corneal keratopathy was assessed in B6 mice following corneal infection with HSV-1, strain McKrae. Starting day one post infection (PI), mice received TTHX1114 for 14 days. The severity of primary stromal keratitis and blepharitis were monitored up to 28 days PI. Inflammatory cell infiltrating infected corneas were characterized up to day 21 PI. The severity of recurrent herpetic disease was quantified in latently infected B6 mice up to 30 days post-UVB corneal exposure. The effect of TTHX1114 on M1 and M2 macrophage polarization was determined in vivo in mice and in vitro on primary human monocytes-derived macrophages. Compared to HSV-1 infected non-treated mice, the infected and TTHX1114 treated mice exhibited significant reduction of primary and recurrent stromal keratitis and blepharitis, without affecting virus corneal replication. The therapeutic effect of TTHX1114 was associated with a significant decrease in the frequency of M1 macrophages infiltrating the cornea, which expressed significantly lower levels of pro-inflammatory cytokines and chemokines. This polarization toward M2 phenotype was confirmed in vitro on human primary macrophages. This pre-clinical finding suggests use of this engineered FGF-1 as a novel immunotherapeutic regimen to reduce primary and recurrent HSV-1-induced corneal disease in the clinic.
Assuntos
Córnea/imunologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Ceratite Herpética/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Animais , Córnea/efeitos dos fármacos , Feminino , Herpesvirus Humano 1 , Humanos , Masculino , CamundongosRESUMO
Over the last two decades, there have been three deadly human outbreaks of coronaviruses (CoVs) caused by SARS-CoV, MERS-CoV, and SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats and transmitted to humans via various intermediate animal reservoirs. It remains highly possible that other global COVID pandemics will emerge in the coming years caused by yet another spillover of a bat-derived SARS-like coronavirus (SL-CoV) into humans. Determining the Ag and the human B cells, CD4+ and CD8+ T cell epitope landscapes that are conserved among human and animal coronaviruses should inform in the development of future pan-coronavirus vaccines. In the current study, using several immunoinformatics and sequence alignment approaches, we identified several human B cell and CD4+ and CD8+ T cell epitopes that are highly conserved in 1) greater than 81,000 SARS-CoV-2 genome sequences identified in 190 countries on six continents; 2) six circulating CoVs that caused previous human outbreaks of the common cold; 3) nine SL-CoVs isolated from bats; 4) nine SL-CoV isolated from pangolins; 5) three SL-CoVs isolated from civet cats; and 6) four MERS strains isolated from camels. Furthermore, the identified epitopes: 1) recalled B cells and CD4+ and CD8+ T cells from both COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2, and 2) induced strong B cell and T cell responses in humanized HLA-DR1/HLA-A*02:01 double-transgenic mice. The findings pave the way to develop a preemptive multiepitope pan-coronavirus vaccine to protect against past, current, and future outbreaks.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T , Genoma Viral/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
Over the last two decades, there have been three deadly human outbreaks of Coronaviruses (CoVs) caused by emerging zoonotic CoVs: SARS-CoV, MERS-CoV, and the latest highly transmissible and deadly SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats, the natural hosts, and transmitted to humans via various intermediate animal reservoirs. Because there is currently no universal pan-Coronavirus vaccine available, two worst-case scenarios remain highly possible: (1) SARS-CoV-2 mutates and transforms into a seasonal "flu-like" global pandemic; and/or (2) Other global COVID-like pandemics will emerge in the coming years, caused by yet another spillover of an unknown zoonotic bat-derived SARS-like Coronavirus (SL-CoV) into an unvaccinated human population. Determining the antigen and epitope landscapes that are conserved among human and animal Coronaviruses as well as the repertoire, phenotype and function of B cells and CD4 + and CD8 + T cells that correlate with resistance seen in asymptomatic COVID-19 patients should inform in the development of pan-Coronavirus vaccines 1 . In the present study, using several immuno-informatics and sequence alignment approaches, we identified several human B-cell, CD4 + and CD8 + T cell epitopes that are highly conserved in: ( i ) greater than 81,000 SARS-CoV-2 human strains identified to date in 190 countries on six continents; ( ii ) six circulating CoVs that caused previous human outbreaks of the "Common Cold"; ( iii ) five SL-CoVs isolated from bats; ( iv ) five SL-CoV isolated from pangolins; ( v ) three SL-CoVs isolated from Civet Cats; and ( vi ) four MERS strains isolated from camels. Furthermore, we identified cross-reactive asymptomatic epitopes that: ( i ) recalled B cell, CD4 + and CD8 + T cell responses from both asymptomatic COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2; and ( ii ) induced strong B cell and T cell responses in "humanized" Human Leukocyte Antigen (HLA)-DR/HLA-A*02:01 double transgenic mice. The findings herein pave the way to develop a pre-emptive multi-epitope pan-Coronavirus vaccine to protect against past, current, and potential future outbreaks.
RESUMO
The nature of antiviral CD8+ T cells associated with protective and pathogenic herpes simplex virus type 1 (HSV-1) infections remains unclear. We compared the transcriptome, phenotype, and function of memory CD8+ T cells, sharing the same HSV-1 epitope-specificities, from infected HLA-A*0201 positive symptomatic (SYMP) vs. asymptomatic (ASYMP) individuals and HLA-A*0201 transgenic rabbits. Compared to higher frequencies of multifunctional effector memory CD8+ TEM cells in ASYMP individuals, the SYMP individuals presented dysfunctional CD8+ TEM cells, expressing major exhaustion pathways. Compared to protected ASYMP HLA transgenic rabbits, the trigeminal ganglia of non-protected SYMP HLA transgenic rabbits had higher frequencies of dysfunctional tissue-resident CD8+ TRM cells. Moreover, blockade of T cell exhaustion pathways restored the function of CD8+ T cells, reduced virus reactivation, and diminished recurrent disease in HLA transgenic rabbits. These findings reveal unique molecular signatures of protective CD8+ T cells and pave the way for T-cell-based immunotherapy to combat recurrent ocular herpes.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 1/imunologia , Memória Imunológica , Ceratite Herpética/imunologia , Ceratite Herpética/virologia , Animais , Animais Geneticamente Modificados , Doenças Assintomáticas , Epitopos , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Herpesvirus Humano 1/fisiologia , Humanos , Imunoterapia , Ceratite Herpética/terapia , Coelhos , Recidiva , Ativação ViralRESUMO
A large proportion of the world's population harbors latent HSV type 1 (HSV-1). Cross-talk between antiviral CD8+ T cells and HSV-1 appear to control latency/reactivation cycles. We found that compared with healthy asymptomatic individuals, in symptomatic (SYMP) patients, the CD8+ T cells with the same HLA-A*0201-restricted HSV-1 epitope specificities expressed multiple genes and proteins associated to major T cell exhaustion pathways and were dysfunctional. Blockade of immune checkpoints with anti-LAG-3 and anti-PD-1 antagonist mAbs synergistically restored the frequency and function of antiviral CD8+ T cells, both 1) ex vivo, in SYMP individuals and SYMP HLA-A*0201 transgenic mice; and 2) in vivo in HSV-1-infected SYMP HLA-A*0201 transgenic mice. This was associated with a significant reduction in virus reactivation and recurrent ocular herpetic disease. These findings confirm antiviral CD8+ T cell exhaustion during SYMP herpes infection and pave the way to targeting immune checkpoints to combat recurrent ocular herpes.