Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(3): 690-693, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300091

RESUMO

We demonstrate a broadband acousto-optic notch filter based on a tubular-lattice hollow-core fiber for the first time to our knowledge. The guided optical modes are modulated by acoustically induced dynamic long-period gratings along the fiber. The device is fabricated employing a short interaction length (7.7 cm) and low drive voltages (10 V). Modulated spectral bands with 20 nm half-width and maximum depths greater than 60% are achieved. The resonant notch wavelength is tuned from 743 to 1355 nm (612 nm span) by changing the frequency of the electrical signal. The results indicate a broader tuning range compared to previous studies using standard and hollow-core fibers. It further reveals unique properties for reconfigurable spectral filters and fiber lasers, pointing to the fast switching and highly efficient modulation of all-fiber photonic devices.

2.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812047

RESUMO

Laser-induced surface structuring is a promising method to suppress electron mulitpacting in the vacuum pipes of particle accelerators. Electrons are scattered inside the rough surface structure, resulting in a low Secondary Electron Yield (SEY) of the material. However, laser processing of internal pipe surfaces with a large aspect ratio is technologically challenging in terms of laser beam guidance and focusing. We present a 532 nm ultrashort-pulse laser setup to process the inner parts of 15 m long beam vacuum tubes of the Large Hadron Collider (LHC). Picosecond pulses at a repetition rate of 200 kHz are guided through an optical fiber toward an inchworm robot traveling inside the beam pipe. The system was installed, characterized, and tested for reliability. First surface treatments achieved the required scan precision. Cu2O-dominated nano-features were observed when processing at high average laser power (5 W) and slow scanning speed (5 mm s-1) in nitrogen flow, and the maximum SEY of copper was decreased from 2.1 to 0.7.

3.
Opt Express ; 31(10): 15316-15325, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157635

RESUMO

We report on the development of all-fiber stand-alone iodine-filled photonic microcells demonstrating record absorption contrast at room temperature. The microcell's fiber is made of inhibited coupling guiding hollow-core photonic crystal fibers. The fiber-core loading with iodine was undertaken at 10-1-10-2mbar vapor pressure using what, to the best of our knowledge, is a novel gas-manifold based on metallic vacuum parts with ceramic coated inner surfaces for corrosion resistance. The fiber is then sealed on the tips and mounted on FC/APC connectors for better integration with standard fiber components. The stand-alone microcells display Doppler lines with contrasts up to 73% in the 633 nm wavelength range, and an off-resonance insertion loss between 3 to 4 dB. Sub-Doppler spectroscopy based on saturable absorption has been carried out to resolve the hyperfine structure of the P(33)6-3 lines at room temperature with a full-width at half maximum of 24 MHz on the b4 component with the help of lock-in amplification. Also, we demonstrate distinguishable hyperfine components on the R(39)6-3 line at room temperature without any recourse to signal-to-noise ratio amplification techniques.

4.
Nat Commun ; 14(1): 1146, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854713

RESUMO

While optical fibers display excellent performances in the infrared, visible and ultraviolet ranges remain poorly addressed by them. Obtaining better fibers for the short-wavelength range has been restricted, in all fiber optics, by scattering processes. In hollow-core fibers, the scattering loss arises from the core roughness and represents the limiting factor for loss reduction regardless of the cladding confinement power. Here, we report on the reduction of the core surface roughness of hollow-core fibers by modifying their fabrication technique. The effect of the modified process has been quantified and the results showed a root-mean-square surface roughness reduction from 0.40 to 0.15 nm. The improvement in the core surface entailed fibers with ultralow loss at short wavelengths. The results reveal this approach as a promising path for the development of hollow-core fibers with loss that can potentially be orders of magnitude lower than the ones achievable with silica-core counterparts.

5.
Sci Rep ; 12(1): 20554, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446830

RESUMO

Creation of sub-epithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable therapeutic biomaterials towards an improved treatment for vocal fold scarring. Several ultrafast laser surgery probes have been developed for precise ablation of surface tissues; however, these probes lack the tight beam focusing required for sub-surface ablation in highly scattering tissues such as vocal folds. Here, we present a miniaturized ultrafast laser surgery probe designed to perform sub-epithelial ablation in vocal folds. The requirement of high numerical aperture for sub-surface ablation, in addition to the small form factor and side-firing architecture required for clinical use, made for a challenging optical design. An Inhibited Coupling guiding Kagome hollow core photonic crystal fiber delivered micro-Joule level ultrashort pulses from a high repetition rate fiber laser towards a custom-built miniaturized objective, producing a 1/e2 focal beam radius of 1.12 ± 0.10 µm and covering a 46 × 46 µm2 scan area. The probe could deliver up to 3.8 µJ pulses to the tissue surface at 40% transmission efficiency through the entire system, providing significantly higher fluences at the focal plane than were required for sub-epithelial ablation. To assess surgical performance, we performed ablation studies on freshly excised porcine hemi-larynges and found that large area sub-epithelial voids could be created within vocal folds by mechanically translating the probe tip across the tissue surface using external stages. Finally, injection of a model biomaterial into a 1 × 2 mm2 void created 114 ± 30 µm beneath the vocal fold epithelium surface indicated improved localization when compared to direct injection into the tissue without a void, suggesting that our probe may be useful for pre-clinical evaluation of injectable therapeutic biomaterials for vocal fold scarring therapy. With future developments, the surgical system presented here may enable treatment of vocal fold scarring in a clinical setting.


Assuntos
Terapia a Laser , Prega Vocal , Animais , Suínos , Prega Vocal/cirurgia , Cicatriz/cirurgia , Materiais Biocompatíveis , Injeções
6.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890822

RESUMO

In this paper, a novel platform for lab-in-fiber-based biosensors is studied. Hollow-core tube lattice fibers (HC-TLFs) are proposed as a label-free biosensor for the detection of DNA molecules. The particular light-guiding mechanism makes them a highly sensitive tool. Their transmission spectrum is featured by alternations of high and low transmittance at wavelength regions whose values depend on the thickness of the microstructured web composing the cladding around the hollow core. In order to achieve DNA detection by using these fibers, an internal chemical functionalization process of the fiber has been performed in five steps in order to link specific peptide nucleic acid (PNA) probes, then the functionalized fiber was used for a three-step assay. When a solution containing a particular DNA sequence is made to flow through the HC of the TLF in an 'optofluidic' format, a bio-layer is formed on the cladding surfaces causing a red-shift of the fiber transmission spectrum. By comparing the fiber transmission spectra before and after the flowing it is possible to identify the eventual formation of the layer and, therefore, the presence or not of a particular DNA sequence in the solution.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos Peptídicos , DNA/química , Sondas de Ácido Nucleico , Fibras Ópticas , Ácidos Nucleicos Peptídicos/química
7.
Opt Express ; 29(14): 22470-22478, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34266009

RESUMO

Negative curvature hollow-core fibers (NC-HCFs) can boost the excellent performance of HCFs in terms of propagation loss, nonlinearity, and latency, while retaining large core and delicate cladding structures, which makes them distinctly different from conventional fibers. Construction of low-loss all-fiber NC-HCF architecture with conventional single-mode fibers (SMFs) is important for various applications. Here we demonstrate an efficient and reliable fusion splicing method to achieve low-loss connection between a NC-HCF and a conventional SMF. By controlling the mode-field profile of the SMF with a two-step reverse-tapering method, we realize a record-low insertion loss of 0.88 dB for a SMF/NC-HCF/SMF chain at 1310 nm. Our method is simple, effective, and reliable, compared with those methods that rely on intermediate bridging elements, such as graded-index fibers, and can greatly facilitate the integration of NC-HCFs and promote more advanced applications with such fibers.

8.
Opt Lett ; 46(3): 456-459, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528383

RESUMO

We report on the development of an acetylene-filled photonic microcell based on an assembly process that is contaminant free and requires no helium buffer gas nor gluing procedure. The microcell consists of a 7-m-long and 30 µm core-diameter inhibited-coupling guiding hollow-core photonic crystal fiber filled with acetylene gas at a pressure in the range of 80 µbar, sealed by capping its ends with fusion-collapsing a glass-tube sleeve, and mounted on FC connectors for integration. The microcell shows a robust single-mode behavior and a total insertion loss of ∼1.5dB. The spectroscopic merit of the formed microcell is tested by generating electromagnetic induced transparency and saturated absorption on R13 and P9 absorption lines, respectively. The sub-Doppler transparencies show a close to transit time limited linewidth of 17±3MHz. The latter was monitored for over 3 months. As a demonstration, the microcell was used to frequency stabilize a laser with fractional frequency instability improvement by a factor 50 at 100 s integration time compared to free running laser operation.

9.
Light Sci Appl ; 10(1): 7, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408320

RESUMO

Remarkable recent demonstrations of ultra-low-loss inhibited-coupling (IC) hollow-core photonic-crystal fibres (HCPCFs) established them as serious candidates for next-generation long-haul fibre optics systems. A hindrance to this prospect and also to short-haul applications such as micromachining, where stable and high-quality beam delivery is needed, is the difficulty in designing and fabricating an IC-guiding fibre that combines ultra-low loss, truly robust single-modeness, and polarisation-maintaining operation. The design solutions proposed to date require a trade-off between low loss and truly single-modeness. Here, we propose a novel IC-HCPCF for achieving low-loss and effective single-mode operation. The fibre is endowed with a hybrid cladding composed of a Kagome-tubular lattice (HKT). This new concept of a microstructured cladding allows us to significantly reduce the confinement loss and, at the same time, preserve truly robust single-mode operation. Experimental results show an HKT-IC-HCPCF with a minimum loss of 1.6 dB/km at 1050 nm and a higher-order mode extinction ratio as high as 47.0 dB for a 10 m long fibre. The robustness of the fibre single-modeness is tested by moving the fibre and varying the coupling conditions. The design proposed herein opens a new route for the development of HCPCFs that combine robust ultra-low-loss transmission and single-mode beam delivery and provides new insight into IC guidance.

10.
Opt Express ; 28(3): 3171-3178, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121990

RESUMO

We demonstrate a novel, energy-efficient, cost-effective simple method for seeding CEP-stable OPCPAs. We couple the CEP-stable idler of a broadband OPCPA into a hollow core Kagome fiber thus compensating for the angular chirp. We obtain either relatively narrow bandwidths with ∼36% coupling efficiency or quarter-octave spanning bandwidths with ∼2.2% coupling efficiency. We demonstrate spectral compressibility, good beam quality and CEP stability. Our source is an ideal seed for high-energy, high-average power, CEP-stable few-cycle OPCPA pulses around 2 µm, which can drive the generation of coherent soft X-ray radiation in the water window spectral region via HHG.

11.
Sci Rep ; 10(1): 1650, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015403

RESUMO

Raman-scattering noise in silica has been the key obstacle toward the realisation of high quality fiber-based photon-pair sources. Here, we experimentally demonstrate how to get past this limitation by dispersion tailoring a xenon-filled hollow-core photonic crystal fiber. The source operates at room temperature, and is designed to generate Raman-free photon-pairs at useful wavelength ranges, with idler in the telecom, and signal in the visible range. We achieve a coincidence-to-accidentals ratio as high as 2740 combined with an ultra low heralded second order coherence [Formula: see text], indicating a very high signal to noise ratio and a negligible multi-photon emission probability. Moreover, by gas-pressure tuning, we demonstrate the control of photon frequencies over a range as large as 13 THz, covering S-C and L telecom band for the idler photon. This work demonstrates that hollow-core photonic crystal fiber is an excellent platform to design high quality photon-pair sources, and could play a driving role in the emerging quantum technology.

12.
Appl Opt ; 58(9): 2198-2204, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31044918

RESUMO

We build a resonant fiber optic gyro based on Kagome hollow-core fiber. A semi-bulk cavity architecture based on an 18-m-long Kagome fiber permits achieving a cavity finesse of 23 with a resonance linewidth of 700 kHz. An optimized Pound-Drever-Hall servo-locking scheme is used to probe the cavity in reflection. Closed-loop operation of the gyroscope permits reaching an angular random walk as small as 0.004°/h and a bias stability of 0.45°/h over 0.5 s of integration time.

13.
Sci Rep ; 9(1): 1376, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718764

RESUMO

Understanding cladding properties is crucial for designing microstructured optical fibers. This is particularly acute for Inhibited-Coupling guiding fibers because of the reliance of their core guidance on the core and cladding mode-field overlap integral. Consequently, careful planning of the fiber cladding parameters allows obtaining fibers with optimized characteristics such as low loss and broad transmission bandwidth. In this manuscript, we report on how one can tailor the modal properties of hollow-core photonic crystal fibers by adequately modifying the fiber cladding. We show that the alteration of the position of the tubular fibers cladding tubes can alter the loss hierarchy of the modes in these fibers, and exhibit salient polarization propriety. In this context, we present two fibers with different cladding structures which favor propagation of higher order core modes - namely LP11 and LP21 modes. Additionally, we provide discussions on mode transformations in these fibers and show that one can obtain uncommon intensity and polarization profiles at the fiber output. This allows the fiber to act as a mode intensity and polarization shaper. We envisage this novel concept can be useful for a variety of applications such as hollow core fiber based atom optics, atom-surface physics, sensing and nonlinear optics.

14.
Opt Lett ; 43(7): 1598-1601, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601039

RESUMO

We report on the development of hypocycloid core-contour inhibited-coupling (IC) Kagome hollow-core photonic crystal fibers (HC-PCFs) with record transmission loss and spectral coverage that include the common industrial laser wavelengths. Using the scaling of the confinement loss with the core-contour negative curvature and the silica strut thickness, we fabricated an IC Kagome HC-PCF for Yb and Nd:Yag laser guidance with record loss level of 8.5 dB/km associated with a 225-nm-wide 3-dB bandwidth. A second HC-PCF is fabricated with reduced silica strut thickness while keeping the hypocycloid core contour. It exhibits a fundamental transmission window spanning down to the Ti:Sa spectral range and a loss figure of 30 dB/km at 750 nm. The fibers' modal properties and bending sensitivity show these HC-PCFs to be ideal for ultralow-loss, flexible, and robust laser beam delivery.

15.
Appl Opt ; 56(34): 9592-9595, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216077

RESUMO

Continuous wave lasing in the visible spectral region from a molecular iodine-filled hollow core photonic crystal fiber is demonstrated. More than an order of magnitude improvement in photon conversion efficiency has been achieved compared to previous nonfiber-based geometries in this spectral region. The laser shows strong coupling of pump and laser polarization.

16.
Opt Lett ; 42(19): 3896-3899, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957155

RESUMO

We report on the spectral-temporal characterization of a 1.8 µm wavelength and high power picosecond pulse Raman source. It is generated via frequency conversion to the first-order Stokes of a 27 ps chirped pulse Yb-doped fiber laser inside a molecular hydrogen-filled Kagome hollow-core photonic crystal fiber (HC-PCF). Depending on the average power and chirp of the pump laser, the average power of this Raman source can be as high as 9.3 W, and its pulse duration can be as short as ∼17 ps. In agreement with stimulated Raman scattering under the very high gain transient regime, the experimental results show the Stokes spectral structure to change following a three-stage sequence when the average pump power is increased. For a pump with a chirp corresponding to a bandwidth of 200 GHz, we found that for a pump power lower than 7 W, the Stokes spectrum is generated from the blue side of the pump spectrum, and then it exhibits a spectral replica of the pump spectrum for 7-14 W pump power range. Finally,the Stokes spectrum is chiefly generated from the red side of the pump spectrum when the pump power is further increased. Conversely, the Stokes pulse temporal profile shows a strong dependence with the pump power. For a low pump power range, the Stokes pulse exhibits a single peak with a full width at half-maximum of ∼17 ps. For higher pump powers, the Stokes pulse presents a double-peak structure with each peak having a duration of less than 15 ps. The present results can be used to develop compact and efficient frequency down-convertors to the increasingly widespread Yb-based picosecond lasers.

17.
Opt Express ; 25(12): 13351-13358, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788872

RESUMO

We investigate the mid-IR laser beam characteristics from an acetylene-filled hollow-core optical fiber gas laser (HOFGLAS) system. The laser exhibits near-diffraction limited beam quality in the 3 µm region with M2 = 1.15 ± 0.02 measured at high pulse energy, and the highest mid-IR pulse energy from a HOFGLAS system of 1.4 µJ is reported. Furthermore, the effects of output saturation with pump pulse energy are reduced through the use of longer fibers with low loss. Finally, the slope efficiency is shown to be nearly independent of gas pressure over a wide range, which is encouraging for further output power increase.

18.
Opt Express ; 24(13): 14642-7, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410616

RESUMO

We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.

19.
Opt Lett ; 41(10): 2286-9, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27176984

RESUMO

We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

20.
Opt Express ; 23(11): 14002-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072769

RESUMO

We report on the generation of over 5 octaves wide Raman combs using inhibited coupling Kagome guiding hollow-core photonic crystal fiber filled with hydrogen and pumped with 22.7 W average power and 27 picosecond pulsed fiber laser. Combs spanning from ~321 nm in the UV to ~12.5 µm in the long-wavelength IR (i.e. from 24 THz to 933 THz) with different spectral content and with an output average power of up to ~10 W were generated. In addition to the clear potential of such a comb as a laser source emitting at spectral ranges, which existing technology poorly addresses like long-wavelength IR and UV, the combination of high Raman net gain and short pump-pulse duration makes these spectra an excellent candidate for intra-pulse waveform synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA