Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38730560

RESUMO

The postictal state, an abnormal cerebral condition following a seizure until the return to the interictal baseline, is frequently overlooked, despite often exceeding ictal duration and significantly impacting patients' lives. This study analyzes stereo-EEG (SEEG) signal dynamics using permutation entropy to quantify recovery time (postictal alteration time - PAT) in focal epilepsy and its clinical correlations. The average PAT was 4.5 min, extending up to an hour and was highest in temporal epilepsy and hippocampal sclerosis. Correlating with age at seizure onset and at SEEG, PAT provides a solution for operationally defining the postictal state and guiding interventions.

2.
J Neurosci Methods ; : 110160, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734149

RESUMO

Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.

3.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514193

RESUMO

The hippocampus is generally considered to have relatively late involvement in recognition memory, its main electrophysiological signature being between 400 and 800 ms after stimulus onset. However, most electrophysiological studies have analyzed the hippocampus as a single responsive area, selecting only a single-site signal exhibiting the strongest effect in terms of amplitude. These classical approaches may not capture all the dynamics of this structure, hindering the contribution of other hippocampal sources that are not located in the vicinity of the selected site. We combined intracerebral electroencephalogram recordings from epileptic patients with independent component analysis during a recognition memory task involving the recognition of old and new images. We identified two sources with different responses emerging from the hippocampus: a fast one (maximal amplitude at ∼250 ms) that could not be directly identified from raw recordings and a latter one, peaking at ∼400 ms. The former component presented different amplitudes between old and new items in 6 out of 10 patients. The latter component had different delays for each condition, with a faster activation (∼290 ms after stimulus onset) for recognized items. We hypothesize that both sources represent two steps of hippocampal recognition memory, the faster reflecting the input from other structures and the latter the hippocampal internal processing. Recognized images evoking early activations would facilitate neural computation in the hippocampus, accelerating memory retrieval of complementary information. Overall, our results suggest that the hippocampal activity is composed of several sources with an early activation related to recognition memory.


Assuntos
Epilepsia , Reconhecimento Psicológico , Humanos , Reconhecimento Psicológico/fisiologia , Memória/fisiologia , Hipocampo/fisiologia , Eletroencefalografia
4.
Epilepsia ; 65(4): e47-e54, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345420

RESUMO

Nodular heterotopia (NH)-related drug-resistant epilepsy is challenging due to the deep location of the NH and the complexity of the underlying epileptogenic network. Using ictal stereo-electroencephalography (SEEG) and functional connectivity (FC) analyses in 14 patients with NH-related drug-resistant epilepsy, we aimed to determine the leading structure during seizures. For this purpose, we compared node IN and OUT strength between bipolar channels inside the heterotopia and inside gray matter, at the group level and at the individual level. At seizure onset, the channels within NH belonging to the epileptogenic and/or propagation network showed higher node OUT-strength than the channels within the gray matter (p = .03), with higher node OUT-strength than node IN-strength (p = .03). These results are in favor of a "leading" role of NH during seizure onset when involved in the epileptogenic- or propagation-zone network (50% of patients). However, when looking at the individual level, no significant difference between NH and gray matter was found, except for one patient (in two of three seizures). This result confirms the heterogeneity and the complexity of the epileptogenic network organization in NH and the need for SEEG exploration to characterize more precisely patient-specific epileptogenic network organization.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Heterotopia Nodular Periventricular , Humanos , Heterotopia Nodular Periventricular/complicações , Heterotopia Nodular Periventricular/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Convulsões , Eletroencefalografia/métodos , Córtex Cerebral , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia
5.
Sci Rep ; 14(1): 4071, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374380

RESUMO

Stereoelectroencephalography is a powerful intracerebral EEG recording method for the presurgical evaluation of epilepsy. It consists in implanting depth electrodes in the patient's brain to record electrical activity and map the epileptogenic zone, which should be resected to render the patient seizure-free. Stereoelectroencephalography has high spatial accuracy and signal-to-noise ratio but remains limited in the coverage of the explored brain regions. Thus, the implantation might provide a suboptimal sampling of epileptogenic regions. We investigate the potential of improving a suboptimal stereoelectroencephalography recording by performing source localization on stereoelectroencephalography signals. We propose combining independent component analysis, connectivity measures to identify components of interest, and distributed source modelling. This approach was tested on two patients with two implantations each, the first failing to characterize the epileptogenic zone and the second giving a better diagnosis. We demonstrate that ictal and interictal source localization performed on the first stereoelectroencephalography recordings matches the findings of the second stereo-EEG exploration. Our findings suggest that independent component analysis followed by source localization on the topographies of interest is a promising method for retrieving the epileptogenic zone in case of suboptimal implantation.


Assuntos
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Técnicas Estereotáxicas , Eletroencefalografia/métodos , Encéfalo , Eletrodos Implantados
6.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37744469

RESUMO

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

7.
Epilepsia ; 65(2): 389-401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041564

RESUMO

OBJECTIVE: Quantification of the epileptogenic zone network (EZN) most frequently implies analysis of seizure onset. However, important information can also be obtained from the postictal period, characterized by prominent changes in the EZN. We used permutation entropy (PE), a measure of signal complexity, to analyze the peri-ictal stereoelectroencephalography (SEEG) signal changes with emphasis on the postictal state. We sought to determine the best PE-derived parameter (PEDP) for identifying the EZN. METHODS: Several PEDPs were computed retrospectively on SEEG-recorded seizures of 86 patients operated on for drug-resistant epilepsy: mean baseline preictal entropy, minimum ictal entropy, maximum postictal entropy, the ratio between the maximum postictal and the minimum ictal entropy, and the ratio between the maximum postictal and the baseline preictal entropy. The performance of each biomarker was assessed by comparing the identified epileptogenic contacts or brain regions against the EZN defined by clinical analysis incorporating the Epileptogenicity Index and the connectivity epileptogenicity index methods (EZNc), using the receiver-operating characteristic and precision-recall. RESULTS: The ratio between the maximum postictal and the minimum ictal entropy (defined as the Permutation Entropy Index [PEI]) proved to be the best-performing PEDP to identify the EZNC . It demonstrated the highest area under the curve (AUC) and F1 score at the contact level (AUC 0.72; F1 0.39) and at the region level (AUC 0.78; F1 0.47). PEI values gradually decreased between the EZN, the propagation network, and the non-involved regions. PEI showed higher performance in patients with slow seizure-onset patterns than in those with fast seizure-onset patterns. The percentage of resected epileptogenic regions defined by PEI was significantly correlated with surgical outcome. SIGNIFICANCE: PEI is a promising tool to improve the delineation of the EZN. PEI combines ease and robustness in a routine clinical setting with high sensitivity for seizures without fast activity at seizure onset.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Estudos Retrospectivos , Entropia , Encéfalo/diagnóstico por imagem , Convulsões
8.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932045

RESUMO

Magnetoencephalography based on superconducting quantum interference devices (SQUIDs) has been shown to improve the diagnosis and surgical treatment decision for presurgical evaluation of drug-resistant epilepsy. Still, its use remains limited because of several constraints such as cost, fixed helmet size, and the obligation of immobility. A new generation of sensors, optically pumped magnetometers (OPMs), could overcome these limitations. In this study, we validate the ability of helium-based OPM (4He-OPM) sensors to record epileptic brain activity thanks to simultaneous recordings with intracerebral EEG [stereotactic EEG (SEEG)]. We recorded simultaneous SQUIDs-SEEG and 4He-OPM-SEEG signals in one patient during two sessions. We show that epileptic activities on intracerebral EEG can be recorded by OPMs with a better signal-to noise ratio than classical SQUIDs. The OPM sensors open new venues for the widespread application of magnetoencephalography in the management of epilepsy and other neurologic diseases and fundamental neuroscience.


Assuntos
Epilepsia , Hélio , Humanos , Animais , Magnetoencefalografia , Epilepsia/diagnóstico , Eletroencefalografia , Decapodiformes , Encéfalo
9.
Ann Clin Transl Neurol ; 10(11): 2114-2126, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37735846

RESUMO

OBJECTIVE: Stereoelectroencephalography (SEEG) is the reference method in the presurgical exploration of drug-resistant focal epilepsy. However, prognosticating surgery on an individual level is difficult. A quantified estimation of the most epileptogenic regions by searching for relevant biomarkers can be proposed for this purpose. We investigated the performances of ictal (Epileptogenicity Index, EI; Connectivity EI, cEI), interictal (spikes, high-frequency oscillations, HFO [80-300 Hz]; Spikes × HFO), and combined (Spikes × EI; Spikes × cEI) biomarkers in predicting surgical outcome and searched for prognostic factors based on SEEG-signal quantification. METHODS: Fifty-three patients operated on following SEEG were included. We compared, using precision-recall, the epileptogenic zone quantified using different biomarkers (EZq ) against the visual analysis (EZC ). Correlations between the EZ resection rates or the EZ extent and surgical prognosis were analyzed. RESULTS: EI and Spikes × EI showed the best precision against EZc (0.74; 0.70), followed by Spikes × cEI and cEI, whereas interictal markers showed lower precision. The EZ resection rates were greater in seizure-free than in non-seizure-free patients for the EZ defined by ictal biomarkers and were correlated with the outcome for EI and Spikes × EI. No such correlation was found for interictal markers. The extent of the quantified EZ did not correlate with the prognosis. INTERPRETATION: Ictal or combined ictal-interictal markers overperformed the interictal markers both for detecting the EZ and predicting seizure freedom. Combining ictal and interictal epileptogenicity markers improves detection accuracy. Resection rates of the quantified EZ using ictal markers were the only statistically significant determinants for surgical prognosis.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Hemisferectomia , Humanos , Eletroencefalografia/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Biomarcadores
10.
Epilepsia ; 64(8): 2027-2043, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37199673

RESUMO

OBJECTIVE: We studied the rate dynamics of interictal events occurring over fast-ultradian time scales, as commonly examined in clinics to guide surgical planning in epilepsy. METHODS: Stereo-electroencephalography (SEEG) traces of 35 patients with good surgical outcome (Engel I) were analyzed. For this we developed a general data mining method aimed at clustering the plethora of transient waveform shapes including interictal epileptiform discharges (IEDs) and assessed the temporal fluctuations in the capability of mapping the epileptogenic zone (EZ) of each type of event. RESULTS: We found that the fast-ultradian dynamics of the IED rate may effectively impair the precision of EZ identification, and appear to occur spontaneously, that is, not triggered by or exclusively associated with a particular cognitive task, wakefulness, sleep, seizure occurrence, post-ictal state, or antiepileptic drug withdrawal. Propagation of IEDs from the EZ to the propagation zone (PZ) could explain the observed fast-ultradian fluctuations in a reduced fraction of the analyzed patients, suggesting that other factors like the excitability of the epileptogenic tissue could play a more relevant role. A novel link was found between the fast-ultradian dynamics of the overall rate of polymorphic events and the rate of specific IEDs subtypes. We exploited this feature to estimate in each patient the 5 min interictal epoch for near-optimal EZ and resected-zone (RZ) localization. This approach produces at the population level a better EZ/RZ classification when compared to both (1) the whole time series available in each patient (p = .084 for EZ, p < .001 for RZ, Wilcoxon signed-rank test) and (2) 5 min epochs sampled randomly from the interictal recordings of each patient (p < .05 for EZ, p < .001 for RZ, 105 random samplings). SIGNIFICANCE: Our results highlight the relevance of the fast-ultradian IED dynamics in mapping the EZ, and show how this dynamics can be estimated prospectively to inform surgical planning in epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões , Epilepsia/cirurgia , Eletroencefalografia/métodos , Epilepsias Parciais/cirurgia
11.
J Neurosci ; 43(29): 5350-5364, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37217308

RESUMO

A sentence is more than the sum of its words: its meaning depends on how they combine with one another. The brain mechanisms underlying such semantic composition remain poorly understood. To shed light on the neural vector code underlying semantic composition, we introduce two hypotheses: (1) the intrinsic dimensionality of the space of neural representations should increase as a sentence unfolds, paralleling the growing complexity of its semantic representation; and (2) this progressive integration should be reflected in ramping and sentence-final signals. To test these predictions, we designed a dataset of closely matched normal and jabberwocky sentences (composed of meaningless pseudo words) and displayed them to deep language models and to 11 human participants (5 men and 6 women) monitored with simultaneous MEG and intracranial EEG. In both deep language models and electrophysiological data, we found that representational dimensionality was higher for meaningful sentences than jabberwocky. Furthermore, multivariate decoding of normal versus jabberwocky confirmed three dynamic patterns: (1) a phasic pattern following each word, peaking in temporal and parietal areas; (2) a ramping pattern, characteristic of bilateral inferior and middle frontal gyri; and (3) a sentence-final pattern in left superior frontal gyrus and right orbitofrontal cortex. These results provide a first glimpse into the neural geometry of semantic integration and constrain the search for a neural code of linguistic composition.SIGNIFICANCE STATEMENT Starting from general linguistic concepts, we make two sets of predictions in neural signals evoked by reading multiword sentences. First, the intrinsic dimensionality of the representation should grow with additional meaningful words. Second, the neural dynamics should exhibit signatures of encoding, maintaining, and resolving semantic composition. We successfully validated these hypotheses in deep neural language models, artificial neural networks trained on text and performing very well on many natural language processing tasks. Then, using a unique combination of MEG and intracranial electrodes, we recorded high-resolution brain data from human participants while they read a controlled set of sentences. Time-resolved dimensionality analysis showed increasing dimensionality with meaning, and multivariate decoding allowed us to isolate the three dynamical patterns we had hypothesized.


Assuntos
Encéfalo , Idioma , Masculino , Humanos , Feminino , Encéfalo/fisiologia , Semântica , Linguística , Mapeamento Encefálico/métodos , Leitura , Imageamento por Ressonância Magnética/métodos
12.
Clin Neurophysiol ; 150: 176-183, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075682

RESUMO

OBJECTIVE: To evaluate the respective roles of the anterior thalamic nucleus (ANT) and the medial pulvinar (PuM) during mesial temporal lobe seizures recorded by stereoelectroencephalography (SEEG). METHODS: We assessed functional connectivity (FC) in 15 SEEG recorded seizures from 6 patients using a non-linear correlation method. Functional interactions were explored between the mesial temporal region, the temporal neocortex, ANT and PuM. The node total-strength (the summed connectivity of the node with all other nodes) as well as the directionality of the links (IN and OUT strengths) were calculated to estimate drivers and receivers during the cortico-thalamic interactions. RESULTS: Significant increased thalamo-cortical FC during seizures was observed, with the node total-strength reaching a maximum at seizure end. There was no significant difference in global connectivity values between ANT and PuM. Regarding directionality, significantly higher thalamic IN strength values were observed. However, compared to ANT, PuM appeared to be the driver at the end of seizures with synchronous termination. CONCLUSIONS: This work demonstrates that during temporal seizures, both thalamic nuclei are highly connected with the mesial temporal region and that PuM could play a role in seizure termination. SIGNIFICANCE: Understanding functional connectivity between the mesial temporal and thalamic nuclei could contribute to the development of target-specific deep brain stimulation strategies for drug-resistant epilepsy.


Assuntos
Núcleos Anteriores do Tálamo , Epilepsia do Lobo Temporal , Pulvinar , Humanos , Pulvinar/diagnóstico por imagem , Epilepsia do Lobo Temporal/diagnóstico por imagem , Convulsões , Lobo Temporal , Núcleos Talâmicos , Núcleos Anteriores do Tálamo/diagnóstico por imagem
13.
Epilepsia ; 64(6): 1582-1593, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37032394

RESUMO

OBJECTIVE: Stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) aims to reduce seizure frequency by modifying epileptogenic networks through local thermocoagulative lesions. Although RF-TC is hypothesized to functionally modify brain networks, reports of changes in functional connectivity (FC) following the procedure are missing. We evaluated, by means of SEEG recordings, whether variation in brain activity after RF-TC is related to clinical outcome. METHODS: Interictal SEEG recordings from 33 patients with drug-resistant epilepsy (DRE) were analyzed. Therapeutic response was defined as a >50% reduction in seizure frequency for at least 1 month following RF-TC. Local (power spectral density [PSD]) and FC changes were evaluated in 3-min segments recorded shortly before (baseline), shortly after, and 15 min after RF-TC. The PSD and FC strength values after thermocoagulation were compared with baseline as well as between the responder and nonresponder groups. RESULTS: In responders, we found a significant reduction in PSD after RF-TC in channels that were thermocoagulated for all frequency bands (p = .007 for broad, delta and theta, p <.001 for alpha and beta bands). However, we did not observe such PSD decrease in nonresponders. At the network level, nonresponders displayed a significant FC increase in all frequency bands except theta (broad, delta, beta band: p <.001; alpha band: p <.01), although responders showed a significant FC decrease in delta (p <.001) and alpha bands (p <.05). Nonresponders showed stronger FC changes with respect to responders exclusively in TC channels (broad, alpha, theta, beta: p >.05; delta: p = .001). SIGNIFICANCE: Thermocoagulation induces both local and network-related (FC) changes in electrical brain activity of patients with DRE lasting for at least 15 min. This study demonstrates that the observed short-term modifications in brain network and local activity significantly differ between responders and nonresponders and opens new perspectives for studying the longer-lasting FC changes after RF-TC.


Assuntos
Epilepsia Resistente a Medicamentos , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Resultado do Tratamento , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Técnicas Estereotáxicas , Eletrocoagulação/métodos
14.
Front Hum Neurosci ; 17: 1154038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082152

RESUMO

Investigating cognitive brain functions using non-invasive electrophysiology can be challenging due to the particularities of the task-related EEG activity, the depth of the activated brain areas, and the extent of the networks involved. Stereoelectroencephalographic (SEEG) investigations in patients with drug-resistant epilepsy offer an extraordinary opportunity to validate information derived from non-invasive recordings at macro-scales. The SEEG approach can provide brain activity with high spatial specificity during tasks that target specific cognitive processes (e.g., memory). Full validation is possible only when performing simultaneous scalp SEEG recordings, which allows recording signals in the exact same brain state. This is the approach we have taken in 12 subjects performing a visual memory task that requires the recognition of previously viewed objects. The intracranial signals on 965 contact pairs have been compared to 391 simultaneously recorded scalp signals at a regional and whole-brain level, using multivariate pattern analysis. The results show that the task conditions are best captured by intracranial sensors, despite the limited spatial coverage of SEEG electrodes, compared to the whole-brain non-invasive recordings. Applying beamformer source reconstruction or independent component analysis does not result in an improvement of the multivariate task decoding performance using surface sensor data. By analyzing a joint scalp and SEEG dataset, we investigated whether the two types of signals carry complementary information that might improve the machine-learning classifier performance. This joint analysis revealed that the results are driven by the modality exhibiting best individual performance, namely SEEG.

15.
Brain Topogr ; 36(2): 129-134, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624220

RESUMO

Pure amnestic seizures are defined as self-limited episodes with isolated, anterograde memory loss and have been attributed to bilateral dysfunction of mesial temporal structures. This type of seizure can occur in patients with different forms of temporal lobe epilepsy and has been more recently associated with a late-onset epileptic syndrome, called transient epileptic amnesia (TEA). The mechanisms of such prolonged manifestations are not well known and notably its ictal or post-ictal origin remains poorly understood. We report a case of prolonged anterograde amnesia (lasting several hours) following a brief seizure induced by stimulation of the left entorhinal cortex, recorded during stereo-EEG (SEEG). This episode was associated with prolonged changes in the intracerebral EEG signal complexity (entropy) within bilateral mesial temporal structures, particularly the entorhinal cortices, with a progressive normalization paralleling the clinical recovery. Our case shows that long-lasting (hours) memory impairment may follow brief seizure that led to prolonged electrophysiological signals alterations in bilateral mesial temporal structures.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Convulsões , Epilepsia do Lobo Temporal/diagnóstico por imagem , Amnésia/diagnóstico por imagem , Amnésia/complicações , Eletroencefalografia
16.
Neuroimage ; 269: 119905, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720438

RESUMO

Stereo-electroencephalography (SEEG) is the surgical implantation of electrodes in the brain to better localize the epileptic network in pharmaco-resistant epileptic patients. This technique has exquisite spatial and temporal resolution. Still, the number and the position of the electrodes in the brain is limited and determined by the semiology and/or preliminary non-invasive examinations, leading to a large number of unexplored brain structures in each patient. Here, we propose a new approach to reconstruct the activity of non-sampled structures in SEEG, based on independent component analysis (ICA) and dipole source localization. We have tested this approach with an auditory stimulation dataset in ten patients. The activity directly recorded from the auditory cortex served as ground truth and was compared to the ICA applied on all non-auditory electrodes. Our results show that the activity from the auditory cortex can be reconstructed at the single trial level from contacts as far as ∼40 mm from the source. Importantly, this reconstructed activity is localized via dipole fitting in the proximity of the original source. In addition, we show that the size of the confidence interval of the dipole fitting is a good indicator of the reliability of the result, which depends on the geometry of the SEEG implantation. Overall, our approach allows reconstructing the activity of structures far from the electrode locations, partially overcoming the spatial sampling limitation of intracerebral recordings.


Assuntos
Mapeamento Encefálico , Epilepsia , Humanos , Mapeamento Encefálico/métodos , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Encéfalo
17.
Neuroimage ; 265: 119806, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513288

RESUMO

Magnetoencephalography (MEG) is a powerful tool for estimating brain connectivity with both good spatial and temporal resolution. It is particularly helpful in epilepsy to characterize non-invasively the epileptic networks. However, using MEG to map brain networks requires solving a difficult inverse problem that introduces uncertainty in the activity localization and connectivity measures. Our goal here was to compare independent component analysis (ICA) followed by dipole source localization and the linearly constrained minimum-variance beamformer (LCMV-BF) for characterizing regions with interictal epileptic activity and their dynamic connectivity. After a simulation study, we compared ICA and LCMV-BF results with intracerebral EEG (stereotaxic EEG, SEEG) recorded simultaneously in 8 epileptic patients, which provide a unique 'ground truth' to which non-invasive results can be confronted. We compared the signal time courses extracted applying ICA and LCMV-BF on MEG data to that of SEEG, both for the actual signals and the dynamic connectivity computed using cross-correlation (evolution of links in time). With our simulations, we illustrated the different effect of the temporal and spatial correlation among sources on the two methods. While ICA was more affected by the temporal correlation but robust against spatial configurations, LCMV-BF showed opposite behavior. Moreover, ICA seems more suited to retrieve the simulated networks. In case of real patient data, good MEG/SEEG correlation and good localization were obtained in 6 out of 8 patients. In 4 of them ICA had the best performance (higher correlation, lower localization distance). In terms of dynamic connectivity, the evolution in time of the cross-correlation links could be retrieved in 5 patients out of 6, however, with more variable results in terms of correlation and distance. In two patients LCMV-BF had better results than ICA. In one patient the two methods showed equally good outcomes, and in the remaining two patients ICA performed best. In conclusion, our results obtained by exploiting simultaneous MEG/SEEG recordings suggest that ICA and LCMV-BF have complementary qualities for retrieving the dynamics of interictal sources and their network interactions.


Assuntos
Epilepsia , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Encéfalo , Eletroencefalografia/métodos , Mapeamento Encefálico/métodos
18.
Sci Rep ; 12(1): 22276, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566285

RESUMO

Alteration of awareness is a main feature of focal epileptic seizures. In this work, we studied how the information contained in EEG signals was modified during temporal lobe seizures with altered awareness by using permutation entropy (PE) as a measure of the complexity of the signal. PE estimation was performed in thirty-six seizures of sixteen patients with temporal lobe epilepsy who underwent SEEG recordings. We tested whether altered awareness (based on the Consciousness Seizure Score) was correlated with a loss of signal complexity. We estimated global changes in PE as well as regional changes to gain insight into the mechanisms associated with awareness impairment. Our results reveal a positive correlation between the decrease of entropy and the consciousness score as well as the existence of a threshold on entropy that could discriminate seizures with no alteration of awareness from seizures with profound alteration of awareness. The loss of signal complexity was diffuse, extending bilaterally and to the associative cortices, in patients with profound alteration of awareness and limited to the temporal mesial structures in patients with no alteration of awareness. Thus PE is a promising tool to discriminate between the different subgroups of awareness alteration in TLE.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Humanos , Estado de Consciência , Eletroencefalografia/métodos , Convulsões/complicações
19.
Neuroimage ; 264: 119681, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270623

RESUMO

The prevailing gold standard for presurgical determination of epileptogenic brain networks is intracerebral EEG, a potent yet invasive approach. Magnetoencephalography (MEG) is a state-of-the art non-invasive method for investigating epileptiform discharges. However, it is not clear at what level the precision offered by MEG can reach that of SEEG. Here, we present a strategy for non-invasively retrieving the constituents of the interictal network, with high spatial and temporal precision. Our method is based on MEG and a combination of spatial filtering and independent component analysis (ICA). We validated this approach in twelve patients with drug-resistant focal epilepsy, thanks to the unprecedented ground truth provided by simultaneous recordings of MEG and SEEG. A minimum variance adaptive beamformer estimated the source time series and ICA was used to further decompose these time series into network constituents (MEG-ICs), each having a time series (virtual electrode) and a topography (spatial distribution of amplitudes in the brain). We show that MEG has a considerable sensitivity of 0.80 and 0.84 and a specificity of 0.93 and 0.91 for reconstructing deep and superficial sources, respectively, when compared to the ground truth (SEEG). For each epileptic MEG-IC (n = 131), we found at least one significantly correlating SEEG contact close to zero lag after correcting for multiple comparisons. All the patients except one had at least one epileptic component that was highly correlated (Spearman rho>0.3) with that of SEEG traces. MEG-ICs correlated well with SEEG traces. The strength of correlation coefficients did not depend on the depth of the SEEG contacts or the clinical outcome of the patient. A significant proportion of the MEG-ICs (n = 83/131) were localized in proximity with their maximally correlating SEEG, within a mean distance of 20±12.18mm. Our research is the first to validate the MEG-retrieved beamformer IC sources against SEEG-derived ground truth in a simultaneous MEG-SEEG framework. Observations from the present study suggest that non-invasive MEG source components may potentially provide additional information, comparable to SEEG in a number of instances.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Magnetoencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Eletroencefalografia/métodos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Encéfalo
20.
Brain Topogr ; 35(5-6): 627-635, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36071370

RESUMO

Mania is characterized by affective and cognitive alterations, with heightened external and self-awareness that are opposite to the alteration of awareness during epileptic seizures. Electrical stimulations carried out routinely during stereotactic intracerebral EEG (SEEG) recordings for presurgical evaluation of epilepsy may represent a unique opportunity to study the pathophysiology of such complex emotional-behavioral phenomenon, particularly difficult to reproduce in experimental setting. We investigated SEEG signals-based functional connectivity between different brain regions involved in emotions and in consciousness processing during a manic state induced by electrical stimulation in a patient with drug-resistant focal epilepsy. The stimulation inducing manic state and an asymptomatic stimulation of the same site, as well as a seizure with alteration of awareness (AOA) were analyzed. Functional connectivity analysis was performed by measuring interdependencies (nonlinear regression analysis based on the h2 coefficient) between broadband SEEG signals and within typical sub-bands, before and after stimulation, or before and during the seizure with AOA, respectively. Stimulation of the right lateral prefrontal cortex induced a manic state lasting several hours. Its onset was associated with significant increase of broadband-signal functional coupling between the right hemispheric limbic nodes, the temporal pole and the claustrum, whereas significant decorrelation between the right lateral prefrontal and the anterior cingulate cortex was observed in theta-band. In contrast, ictal alteration of awareness was associated with increased broadband and sub-bands synchronization within and between the internal and external awareness networks, including the anterior and middle cingulate, the mesial and lateral prefrontal, the inferior parietal and the temporopolar cortex. Our data suggest the existence of network- and frequency-specific functional connectivity patterns during manic state. A transient desynchronization of theta activity between the external and internal awareness network hubs is likely to increase awareness, with potential therapeutic effect.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Mania , Emoções/fisiologia , Convulsões , Estimulação Elétrica , Estado de Consciência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA