RESUMO
As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.
Assuntos
Marte , Voo Espacial , Humanos , Meio Ambiente Extraterreno , Exobiologia , Contenção de Riscos Biológicos , AstronaveRESUMO
The National Aeronautics and Space Administration (NASA) has been monitoring the microbial burden of spacecraft since the 1970's Viking missions. Originally culture-based and then focused 16S sequencing techniques were used, but we have now applied whole metagenomic sequencing to a variety of cleanroom samples at the Jet Propulsion Lab (JPL), including the Spacecraft Assembly Facility (SAF) with the goals of taxonomic identification and for functional assignment. Our samples included facility pre-filters, cleanroom vacuum debris, and surface wipes. The taxonomic composition was carried out by three different analysis tools to contrast marker, k-mer, and true alignment approaches. Hierarchical clustering analysis of the data separated vacuum particles from other SAF DNA samples. Vacuum particle samples were the most diverse while DNA samples from the ISO (International Standards Organization) compliant facilities and the SAF were the least diverse; all three were dominated by Proteobacteria. Wipe samples had higher diversity and were predominated by Actinobacteria, including human commensals Cutibacterium acnes and Corynebacterium spp. Taxa identified by the three methods were not identical, supporting the use of multiple methods for metagenome characterization. Likewise, functional annotation was performed using multiple methods. Vacuum particles and SAF samples contained strong signals of the tricarboxylic acid cycle and of amino acid biosynthesis, suggesting that many of the identified microorganisms have the ability to grow in nutrient-limited environments. In total, 18 samples generated high quality metagenome assembled genomes (MAG), which were dominated by Moraxella osloensis or Malassezia restricta. One M. osloensis MAG was assembled into a single circular scaffold and gene annotated. This study includes a rigorous quantitative determination of microbial loads and a qualitative dissection of microbial composition. Assembly of multiple specimens led to greater confidence for the identification of particular species and their predicted functional roles.
Assuntos
Metagenoma , Astronave , Humanos , Bactérias/genéticaRESUMO
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
Assuntos
Marte , Voo Espacial , Teorema de Bayes , Meio Ambiente Extraterreno , Pesquisa EspacialRESUMO
BACKGROUND: Clean rooms of the Space Assembly Facility (SAF) at the Jet Propulsion Laboratory (JPL) at NASA are the final step of spacecraft cleaning and assembly before launching into space. Clean rooms have stringent methods of air-filtration and cleaning to minimize microbial contamination for exoplanetary research and minimize the risk of human pathogens, but they are not sterile. Clean rooms make a selective environment for microorganisms that tolerate such cleaning methods. Previous studies have attempted to characterize the microbial cargo through sequencing and culture-dependent protocols. However, there is not a standardized metagenomic workflow nor analysis pipeline for spaceflight hardware cleanroom samples to identify microbial contamination. Additionally, current identification methods fail to characterize and profile the risk of low-abundance microorganisms. RESULTS: A comprehensive metagenomic framework to characterize microorganisms relevant for planetary protection in multiple cleanroom classifications (from ISO-5 to ISO-8.5) and sample types (surface, filters, and debris collected via vacuum devices) was developed. Fifty-one metagenomic samples from SAF clean rooms were sequenced and analyzed to identify microbes that could potentially survive spaceflight based on their microbial features and whether the microbes expressed any metabolic activity or growth. Additionally, an auxiliary testing was performed to determine the repeatability of our techniques and validate our analyses. We find evidence that JPL clean rooms carry microbes with attributes that may be problematic in space missions for their documented ability to withstand extreme conditions, such as psychrophilia and ability to form biofilms, spore-forming capacity, radiation resistance, and desiccation resistance. Samples from ISO-5 standard had lower microbial diversity than those conforming to ISO-6 or higher filters but still carried a measurable microbial load. CONCLUSIONS: Although the extensive cleaning processes limit the number of microbes capable of withstanding clean room condition, it is important to quantify thresholds and detect organisms that can inform ongoing Planetary Protection goals, provide a biological baseline for assembly facilities, and guide future mission planning. Video Abstract.
Assuntos
Metagenômica , Voo Espacial , Ambiente Controlado , Humanos , Metagenoma , AstronaveRESUMO
Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection-Spore-Bioburden-MSL-Curiosity-Contamination-Mars. Astrobiology 17, 253-265.
Assuntos
Bactérias/metabolismo , Meio Ambiente Extraterreno , Laboratórios , Marte , Viabilidade Microbiana , Astronave , Aerobiose , Anaerobiose , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/efeitos da radiação , Dessecação , Elétrons , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Peróxidos/toxicidade , Filogenia , Raios UltravioletaRESUMO
The National Aeronautics and Space Administration (NASA) measures and validates the biological cleanliness of spacecraft surfaces by counting endospores using the NASA standard assay (NSA). NASA has also approved an adenosine-5'-triphosphate (ATP)-based detection methodology as a means to prescreen surfaces for the presence of microbial contamination, prior to the spore assay. During Mars Science Laboratory (MSL) spacecraft assembly, test, and launch operations, 4853 surface samples were collected to verify compliance with the bioburden requirement at launch. A subset of these samples was measured for microbial cleanliness using both the NSA (n = 272) and ATP assay (n = 249). NSA results revealed that ~8% (22/272) of the samples showed the presence of at least one spore, whereas ATP assay measurements indicated that ~15% (35/249) of samples exceeded the "threshold cleanliness limit" of 2.3 × 10-11 mmol ATP per 25 cm2 used by MSL. Of the 22 NSA samples with a spore, 18% (4/22) were considered above the level of acceptance by both techniques. Based on post launch data analysis presented here, it was determined that this threshold cleanliness limit of 2.3 × 10-11 mmol ATP per 25 cm2 could be adopted as a benchmark for assessing spacecraft surface cleanliness. This study clearly demonstrates the value of using alternative methods to rapidly assess spacecraft cleanliness, and provides useful information regarding the process.
RESUMO
Here, we present the draft genome of Bacillus safensis JPL-MERTA-8-2, a strain found in a spacecraft assembly cleanroom before launch of the Mars Exploration Rovers. The assembly contains 3,671,133 bp in 14 contigs.
RESUMO
Extreme-tolerant bacteria (82 strains; 67 species) isolated during various assembly phases of the Phoenix spacecraft were permanently archived within the U.S. Department of Agriculture's Agricultural Research Service Culture Collection in Peoria, Illinois. This represents the first microbial collection of spacecraft-associated surfaces within the United States to be deposited into a freely available, government-funded culture collection. Archiving extreme-tolerant microorganisms from NASA mission(s) will provide opportunities for scientists who are involved in exploring microbes that can tolerate extreme conditions.
Assuntos
Adaptação Fisiológica , Bactérias/isolamento & purificação , Bancos de Espécimes Biológicos , Setor Público , Astronave , Contaminação de Equipamentos , Variação Genética , Illinois , Filogenia , Estados Unidos , United States Department of AgricultureRESUMO
The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×105 spores, well within the required specification of less than 5.0×105 spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×104, well below the allowed limit of 3.0×105 spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.
Assuntos
Contenção de Riscos Biológicos , Meio Ambiente Extraterreno , Laboratórios , Marte , Astronave , Bactérias/isolamento & purificação , Contaminação de EquipamentosRESUMO
On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.
Assuntos
Contenção de Riscos Biológicos , Meio Ambiente Extraterreno , Laboratórios , Marte , Astronave , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Contaminação de Equipamentos , Material Particulado/análise , Estados Unidos , United States National Aeronautics and Space AdministrationRESUMO
The advent of phylogenetic DNA microarrays and high-throughput pyrosequencing technologies has dramatically increased the resolution and accuracy of detection of distinct microbial lineages in mixed microbial assemblages. Despite an expanding array of approaches for detecting microbes in a given sample, rapid and robust means of assessing the differential viability of these cells, as a function of phylogenetic lineage, remain elusive. In this study, pre-PCR propidium monoazide (PMA) treatment was coupled with downstream pyrosequencing and PhyloChip DNA microarray analyses to better understand the frequency, diversity and distribution of viable bacteria in spacecraft assembly cleanrooms. Sample fractions not treated with PMA, which were indicative of the presence of both live and dead cells, yielded a great abundance of highly diverse bacterial pyrosequences. In contrast, only 1% to 10% of all of the pyrosequencing reads, arising from a few robust bacterial lineages, originated from sample fractions that had been pre-treated with PMA. The results of PhyloChip analyses of PMA-treated and -untreated sample fractions were in agreement with those of pyrosequencing. The viable bacterial population detected in cleanrooms devoid of spacecraft hardware was far more diverse than that observed in cleanrooms that housed mission-critical spacecraft hardware. The latter was dominated by hardy, robust organisms previously reported to survive in oligotrophic cleanroom environments. Presented here are the findings of the first ever comprehensive effort to assess the viability of cells in low-biomass environmental samples, and correlate differential viability with phylogenetic affiliation.
Assuntos
Bactérias/isolamento & purificação , Ambiente Controlado , Filogenia , Azidas , Bactérias/classificação , Bactérias/genética , Biomassa , DNA Bacteriano/análise , Microbiologia Ambiental , Viabilidade Microbiana , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Propídio/análogos & derivados , RNA Ribossômico 16S/análise , AstronaveRESUMO
A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.
Assuntos
Bactérias/isolamento & purificação , Tipagem Molecular/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Bactérias/crescimento & desenvolvimento , Bioensaio , Contagem de Colônia Microbiana , Ambiente Controlado , Astronave , Esporos Bacterianos/isolamento & purificaçãoRESUMO
A novel Gram-positive, motile, endospore-forming, aerobic bacterium was isolated from the NASA Phoenix Lander assembly clean room that exhibits 100 % 16S rRNA gene sequence similarity to two strains isolated from a deep subsurface environment. All strains are rod-shaped, endospore-forming bacteria, whose endospores are resistant to UV radiation up to 500 J m(-2). A polyphasic taxonomic study including traditional phenotypic tests, fatty acid analysis, 16S rRNA gene sequencing and DNA-DNA hybridization analysis was performed to characterize these novel strains. The 16S rRNA gene sequencing convincingly grouped these novel strains within the genus Paenibacillus as a separate cluster from previously described species. The similarity of 16S rRNA gene sequences among the novel strains was identical but only 98.1 to 98.5 % with their nearest neighbours Paenibacillus barengoltzii ATCC BAA-1209(T) and Paenibacillus timonensis CIP 108005(T). The menaquinone MK-7 was dominant in these novel strains as shown in other species of the genus Paenibacillus. The DNA-DNA hybridization dissociation value was <45 % with the closest related species. The novel strains had DNA G+C contents of 51.9 to 52.8 mol%. Phenotypically, the novel strains can be readily differentiated from closely related species by the absence of urease and gelatinase and the production of acids from a variety of sugars including l-arabinose. The major fatty acid was anteiso-C(15 : 0) as seen in P. barengoltzii and P. timonensis whereas the proportion of C(16 : 0) was significantly different from the closely related species. Based on phylogenetic and phenotypic results, it was concluded that these strains represent a novel species of the genus Paenibacillus, for which the name Paenibacillus phoenicis sp. nov. is proposed. The type strain is 3PO2SA(T) (â= NRRL B-59348(T) â=âNBRC 106274(T)).
Assuntos
Microbiologia Ambiental , Paenibacillus/classificação , Paenibacillus/isolamento & purificação , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Viabilidade Microbiana , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta , Estados Unidos , United States National Aeronautics and Space AdministrationRESUMO
Many proteins produced by Bacillus species isolated from extreme environments have been utilized for industrial purposes, as these extreme environments often promote evolution of unique protein properties. The Borax Lake area is unusual due to its geothermal activity, elevated pH, and high arsenic and salt concentrations in its soils. Soils from this region are likely to harbor alkalitolerant, halotolerant, endospore-forming strains that may be of potential ecological and/or commercial interest. The objectives of this study were to develop new PCR primers that could target Bacillus or closely related 16S rRNA genes, to characterize the diversity of alkalitolerant, halotolerant, endospore-forming organisms in the soils surrounding Borax Lake, and to identify novel organisms that may ultimately provide new enzymes for applied use. A three-pronged approach was used to identify such bacteria in soil samples. Organisms were isolated using two different techniques. Finally, metagenomic DNA from soil samples was subjected to 16S rRNA gene amplification using the newly designed primers. Assays were performed to characterize the halotolerance and alkalitolerance of isolates. Four different endospore-forming genera and 22 different species were identified by sequencing their 16S rRNA genes. Twenty-five organisms had 96% or less identity to known organisms. Thus, the newly designed Bacillus-related PCR primer sets proved useful for the detection of new species of endospore-forming bacteria in these unique soils. Results indicate that the collection of strains obtained from the Borax Lake region represents a rich source of alkalitolerant, halotolerant, endospore formers.
Assuntos
Bacillus/classificação , Biodiversidade , Bactérias Formadoras de Endosporo/classificação , Microbiologia do Solo , Álcalis , Bacillus/genética , Bacillus/isolamento & purificação , Bactérias Aeróbias/classificação , Bactérias Aeróbias/genética , Bactérias Aeróbias/isolamento & purificação , Sequência de Bases , Primers do DNA , Bactérias Formadoras de Endosporo/genética , Bactérias Formadoras de Endosporo/isolamento & purificação , Dados de Sequência Molecular , Oregon , Filogenia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Tolerância ao SalRESUMO
The microbial diversity of Kali chimney plumes, part of a hydrothermal vent field in the Rodriguez Triple Junction, Indian Ocean (depth approximately 2,240 m), was examined in an attempt to discover "extremotolerant" microorganisms that have evolved unique resistance capabilities to this harsh environment. Water and sediment samples were collected from the vent and from sediments located at various distances (2-20 m) away from and surrounding the chimney. Samples were screened for hypertolerant microbes that are able to withstand multiple stresses. A total of 46 isolates were selected for exposure to a number of perturbations, such as heat shock, desiccation, H(2)O(2), and ultraviolet (UV) and gamma-irradiation. The survival of Psychrobacter sp. L0S3S-03b following exposure to >1,000 J/m(2) UV(254) radiation was particularly intriguing amid a background of varying levels of resistance. Vegetative cells of this non-spore-forming microbe not only survived all of the treatments, but also exhibited a 90% lethal dose of 30 s when exposed to simulated martian UV radiation and a 100% lethal dose of 2 min when exposed to full spectrum UV, which is comparable to findings for bacterial endospores.
Assuntos
Biodiversidade , Desidratação/metabolismo , Raios gama , Peróxidos/metabolismo , Raios Ultravioleta , Microbiologia da Água , Bacillus/metabolismo , Bacillus/efeitos da radiação , Oceano Índico , Psychrobacter/metabolismo , Psychrobacter/efeitos da radiaçãoRESUMO
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.
Assuntos
Bacillus/fisiologia , Bacillus/efeitos da radiação , Marte , Simulação de Ambiente Espacial , Raios Ultravioleta , Bacillus/classificação , Bacillus/crescimento & desenvolvimento , Imunidade Inata , Filogenia , Esporos Bacterianos/crescimento & desenvolvimentoRESUMO
Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (=28 colony-forming units/g) in these samples. Six isolates identified as being most closely related to Bacillus pumilus and one Bacillus subtilis isolate were recovered from near-subsurface basalt samples. Populations of purified spores prepared from the isolated strains were subjected to 254-nm UV and ballistics tests in order to assess their resistance to UV radiation and to extreme acceleration shock, two proposed lethal factors for spores during interplanetary transfer. Specific natural isolates of B. pumilus were found to be substantially more resistant to UV and extreme acceleration than were reference laboratory strains of B. subtilis, the benchmark organism, suggesting that spores of environmental B. pumilus isolates may be more likely to survive the rigors of interplanetary transfer.