Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 105: 53-69, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408453

RESUMO

Inhibition of the mechanistic target of rapamycin (mTOR) pathway by rapamycin (RAPA), an FDA-approved immunosuppressive drug used as a clinical therapy to prevent solid organ allograft rejection, enhances longevity in mice. Importantly, RAPA was efficacious even when initiated in relatively old animals, suggesting that mTOR inhibition could potentially slow the progression of aging-associated pathologies in older humans (Harrison et al., 2009; Miller et al., 2011). However, the safety and tolerability of RAPA in older human subjects have not yet been demonstrated. Towards this end, we undertook a placebo-controlled pilot study in 25 generally healthy older adults (aged 70-95 years); subjects were randomized to receive either 1 mg RAPA or placebo daily. Although three subjects withdrew, 11 RAPA and 14 controls completed at least 8 weeks of treatment and were included in the analysis. We monitored for changes that would indicate detrimental effects of RAPA treatment on metabolism, including both standard clinical laboratory assays (CBC, CMP, HbA1c) and oral glucose tolerance tests (OGTTs). We also monitored parameters typically associated with aging that could potentially be modified by RAPA; these included cognitive function which was assessed by three different tools: Executive Interview-25 (EXIT25); Saint Louis University Mental Status Exam (SLUMS); and Texas Assessment of Processing Speed (TAPS). In addition, physical performance was measured by handgrip strength and 40-foot timed walks. Lastly, changes in general parameters of healthy immune aging, including serum pro-inflammatory cytokine levels and blood cell subsets, were assessed. Five subjects reported potential adverse side effects; in the RAPA group, these were limited to facial rash (1 subject), stomatitis (1 subject) and gastrointestinal issues (2 subjects) whereas placebo treated subjects only reported stomatitis (1 subject). Although no other adverse events were reported, statistically significant decrements in several erythrocyte parameters including hemoglobin (HgB) and hematocrit (Hct) as well as in red blood cell count (RBC), red blood cell distribution width (RDW), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were observed in the RAPA-treatment group. None of these changes manifested clinically significant effects during the short duration of this study. Similarly, no changes were noted in any other clinical laboratory, cognitive, physical performance, or self-perceived health status measure over the study period. Immune parameters were largely unchanged as well, possibly due to the advanced ages of the cohort (70-93 years; mean age 80.5). RAPA-associated increases in a myeloid cell subset and in TREGS were detected, but changes in most other PBMC cell subsets were not statistically significant. Importantly, the OGTTs revealed no RAPA-induced change in blood glucose concentration, insulin secretion, and insulin sensitivity. Thus, based on the results of our pilot study, it appears that short-term RAPA treatment can be used safely in older persons who are otherwise healthy; a trial with a larger sample size and longer treatment duration is warranted.


Assuntos
Envelhecimento/efeitos dos fármacos , Cognição/efeitos dos fármacos , Imunossupressores/administração & dosagem , Aptidão Física , Sirolimo/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Esquema de Medicação , Índices de Eritrócitos/efeitos dos fármacos , Feminino , Teste de Tolerância a Glucose , Força da Mão/fisiologia , Humanos , Resistência à Insulina , Masculino , Células Mieloides/citologia , Projetos Piloto , Estudos Prospectivos , Linfócitos T Reguladores/citologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Texas , Teste de Caminhada
2.
Artigo em Inglês | MEDLINE | ID: mdl-27237224

RESUMO

Rapamycin inhibits mechanistic (or mammalian) target of rapamycin (mTOR) that promotes protein production in cells by facilitating ribosome biogenesis (RiBi) and eIF4E-mediated 5'cap mRNA translation. Chronic treatment with encapsulated rapamycin (eRapa) extended health and life span for wild-type and cancer-prone mice. Yet, the long-term consequences of chronic eRapa treatment are not known at the organ level. Here, we report our observations of chronic eRapa treatment on mTORC1 signaling and RiBi in mouse colon and visceral adipose. As expected, chronic eRapa treatment decreased detection of phosphorylated mTORC1/S6K substrate, ribosomal protein (rpS6) in colon and fat. However, in colon, contrary to expectations, there was an upregulation of 18S rRNA and some ribosomal protein genes (RPGs) suggesting increased RiBi. Among RPGs, eRapa increases rpl22l1 mRNA but not its paralog rpl22. Furthermore, there was an increase in the cap-binding protein, eIF4E relative to its repressor 4E-BP1 suggesting increased translation. By comparison, in fat, there was a decrease in the level of 18S rRNA (opposite to colon), while overall mRNAs encoding ribosomal protein genes appeared to increase, including rpl22, but not rpl22l1 (opposite to colon). In fat, there was a decrease in eIF4E relative to actin (opposite to colon) but also an increase in the eIF4E/4E-BP1 ratio likely due to reductions in 4E-BP1 at our lower eRapa dose (similar to colon). Thus, in contrast to predictions of decreased protein production seen in cell-based studies, we provide evidence that colon from chronically treated mice exhibited an adaptive 'pseudo-anabolic' state, which is only partially present in fat, which might relate to differing tissue levels of rapamycin, cell-type-specific responses, and/or strain differences.

3.
J Immunol Res ; 2015: 652875, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543874

RESUMO

Natural killer T (NKT) cells are innate-like lymphocytes that were first described in the late 1980s. Since their initial description, numerous studies have collectively shed light on their development and effector function. These studies have highlighted the unique requirements for the activation of these lymphocytes and the functional responses that distinguish these cells from other effector lymphocyte populations such as conventional T cells and NK cells. This body of literature suggests that NKT cells play diverse nonredundant roles in a number of disease processes, including the initiation and propagation of airway hyperreactivity, protection against a variety of pathogens, development of autoimmunity, and mediation of allograft responses. In this review, however, we focus on the role of a specific lineage of NKT cells in antitumor immunity. Specifically, we describe the development of invariant NKT (iNKT) cells and the factors that are critical for their acquisition of effector function. Next, we delineate the mechanisms by which iNKT cells influence and modulate the activity of other immune cells to directly or indirectly affect tumor growth. Finally, we review the successes and failures of clinical trials employing iNKT cell-based immunotherapies and explore the future prospects for the use of such strategies.


Assuntos
Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Ensaios Clínicos como Assunto , Humanos , Imunidade Inata , Imunoterapia/métodos , Ativação Linfocitária , Neoplasias/terapia
4.
Aging Cell ; 11(2): 326-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22212527

RESUMO

Understanding the factors that contribute to age-related cognitive decline is imperative, particularly as age is the major risk factor for several neurodegenerative disorders. Levels of several cytokines increase in the brain during aging, including IL-1ß, whose levels positively correlate with cognitive deficits. Previous reports show that reducing the activity of the mammalian target of rapamycin (mTOR) extends lifespan in yeast, nematodes, Drosophila, and mice. It remains to be established, however, whether extending lifespan with rapamycin is accompanied by an improvement in cognitive function. In this study, we show that 18-month-old mice treated with rapamycin starting at 2 months of age perform significantly better on a task measuring spatial learning and memory compared to age-matched mice on the control diet. In contrast, rapamycin does not improve cognition when given to 15-month-old mice with pre-existing, age-dependent learning and memory deficits. We further show that the rapamycin-mediated improvement in learning and memory is associated with a decrease in IL-1ß levels and an increase in NMDA signaling. This is the first evidence to show that a small molecule known to increase lifespan also ameliorates age-dependent learning and memory deficits.


Assuntos
Envelhecimento , Interleucina-1beta/metabolismo , Transtornos da Memória/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Drosophila melanogaster , Aprendizagem/efeitos dos fármacos , Camundongos , N-Metilaspartato/metabolismo , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA