Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1181, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360922

RESUMO

Nucleobase editors represent an emerging technology that enables precise single-base edits to the genomes of eukaryotic cells. Most nucleobase editors use deaminase domains that act upon single-stranded DNA and require RNA-guided proteins such as Cas9 to unwind the DNA prior to editing. However, the most recent class of base editors utilizes a deaminase domain, DddAtox, that can act upon double-stranded DNA. Here, we target DddAtox fragments and a FokI-based nickase to the human CIITA gene by fusing these domains to arrays of engineered zinc fingers (ZFs). We also identify a broad variety of Toxin-Derived Deaminases (TDDs) orthologous to DddAtox that allow us to fine-tune properties such as targeting density and specificity. TDD-derived ZF base editors enable up to 73% base editing in T cells with good cell viability and favorable specificity.


Assuntos
Citidina Desaminase , Edição de Genes , Humanos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/metabolismo , Dedos de Zinco , Citidina/genética , Sistemas CRISPR-Cas
2.
Nat Biotechnol ; 37(8): 945-952, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31359006

RESUMO

Engineered nucleases have gained broad appeal for their ability to mediate highly efficient genome editing. However the specificity of these reagents remains a concern, especially for therapeutic applications, given the potential mutagenic consequences of off-target cleavage. Here we have developed an approach for improving the specificity of zinc finger nucleases (ZFNs) that engineers the FokI catalytic domain with the aim of slowing cleavage, which should selectively reduce activity at low-affinity off-target sites. For three ZFN pairs, we engineered single-residue substitutions in the FokI domain that preserved full on-target activity but showed a reduction in off-target indels of up to 3,000-fold. By combining this approach with substitutions that reduced the affinity of zinc fingers, we developed ZFNs specific for the TRAC locus that mediated 98% knockout in T cells with no detectable off-target activity at an assay background of ~0.01%. We anticipate that this approach, and the FokI variants we report, will enable routine generation of nucleases for gene editing with no detectable off-target activity.


Assuntos
Clivagem do DNA , Edição de Genes/métodos , Linfócitos T , Sequência de Bases , DNA/genética , DNA/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas , Humanos , Células K562 , Domínios Proteicos , RNA Mensageiro
3.
Nat Methods ; 12(10): 927-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322838

RESUMO

Regulatory regions harbor multiple transcription factor (TF) recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe an approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.


Assuntos
Proteínas de Transporte/genética , Pegada de DNA/métodos , Genômica/métodos , Proteínas Nucleares/genética , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Elementos Facilitadores Genéticos , Eritrócitos/fisiologia , Eritropoese , Genoma Humano , Humanos , Mutação , Proteínas Repressoras , Fatores de Transcrição/metabolismo
4.
PLoS One ; 4(8): e6478, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19668382

RESUMO

We performed benchmarks of phylogenetic grammar-based ncRNA gene prediction, experimenting with eight different models of structural evolution and two different programs for genome alignment. We evaluated our models using alignments of twelve Drosophila genomes. We find that ncRNA prediction performance can vary greatly between different gene predictors and subfamilies of ncRNA gene. Our estimates for false positive rates are based on simulations which preserve local islands of conservation; using these simulations, we predict a higher rate of false positives than previous computational ncRNA screens have reported. Using one of the tested prediction grammars, we provide an updated set of ncRNA predictions for D. melanogaster and compare them to previously-published predictions and experimental data. Many of our predictions show correlations with protein-coding genes. We found significant depletion of intergenic predictions near the 3' end of coding regions and furthermore depletion of predictions in the first intron of protein-coding genes. Some of our predictions are colocated with larger putative unannotated genes: for example, 17 of our predictions showing homology to the RFAM family snoR28 appear in a tandem array on the X chromosome; the 4.5 Kbp spanned by the predicted tandem array is contained within a FlyBase-annotated cDNA.


Assuntos
Drosophila/genética , Evolução Molecular , Modelos Genéticos , RNA não Traduzido/genética , Animais , Sequência de Bases , Dados de Sequência Molecular , RNA de Transferência/genética , Homologia de Sequência do Ácido Nucleico
5.
Bioinformatics ; 24(4): 579-80, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18218657

RESUMO

UNLABELLED: Interactive examination of RNA multiple alignments for covariant mutations is a useful step in non-coding RNA sequence analysis. We present three parallel implementations of an RNA visualization metaphor: Colorstock, a command-line script using ANSI terminal color; SScolor, a Perl script that generates static HTML pages; and Ratón, an AJAX web application generating dynamic HTML. Each tool can be used to color RNA alignments by secondary structure and to visually highlight compensatory mutations in stems. AVAILABILITY: All source code is freely available under the GPL. The source code can be downloaded and a prototype of Ratón can be accessed at http://biowiki.org/RnaAlignmentViewers.


Assuntos
Biologia Computacional/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Sequência de Bases , Dados de Sequência Molecular , RNA Viral/genética
6.
BMC Bioinformatics ; 7: 428, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17018148

RESUMO

BACKGROUND: Recent years have seen the emergence of genome annotation methods based on the phylo-grammar, a probabilistic model combining continuous-time Markov chains and stochastic grammars. Previously, phylo-grammars have required considerable effort to implement, limiting their adoption by computational biologists. RESULTS: We have developed an open source software tool, xrate, for working with reversible, irreversible or parametric substitution models combined with stochastic context-free grammars. xrate efficiently estimates maximum-likelihood parameters and phylogenetic trees using a novel "phylo-EM" algorithm that we describe. The grammar is specified in an external configuration file, allowing users to design new grammars, estimate rate parameters from training data and annotate multiple sequence alignments without the need to recompile code from source. We have used xrate to measure codon substitution rates and predict protein and RNA secondary structures. CONCLUSION: Our results demonstrate that xrate estimates biologically meaningful rates and makes predictions whose accuracy is comparable to that of more specialized tools.


Assuntos
Algoritmos , Inteligência Artificial , Mapeamento Cromossômico/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Sequência Conservada , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA