Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163630

RESUMO

The commensal bacterium Faecalibacterium prausnitzii has unique anti-inflammatory properties, at least some of which have been attributed to its production of MAM, the Microbial Anti-inflammatory Molecule. Previous phylogenetic studies of F. prausnitzii strains have revealed the existence of various phylogroups. In this work, we address the question of whether MAMs from different phylogroups display distinct anti-inflammatory properties. We first performed wide-scale identification, classification, and phylogenetic analysis of MAM-like proteins encoded in different genomes of F. prausnitzii. When combined with a gene context analysis, this approach distinguished at least 10 distinct clusters of MAMs, providing evidence for functional diversity within this protein. We then selected 11 MAMs from various clusters and evaluated their anti-inflammatory capacities in vitro. A wide range of anti-inflammatory activity was detected. MAM from the M21/2 strain had the highest inhibitory effect (96% inhibition), while MAM from reference strain A2-165 demonstrated only 56% inhibition, and MAM from strain CNCM4541 was almost inactive. These results were confirmed in vivo in murine models of acute and chronic colitis. This study provides insights into the family of MAM proteins and generates clues regarding the choice of F. prausnitzii strains as probiotics for use in targeting chronic inflammatory diseases.


Assuntos
Proteínas de Bactérias/genética , Faecalibacterium prausnitzii/metabolismo , Filogenia , Probióticos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/uso terapêutico , Sequência de Bases , Colite/tratamento farmacológico , Faecalibacterium prausnitzii/genética , Variação Genética , Genoma Bacteriano , Masculino , Camundongos , Análise de Sequência de DNA
2.
J Biomol Struct Dyn ; 40(20): 10136-10152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34155952

RESUMO

Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis, a Gram-negative bacterium described over a century ago. Despite broad vaccine coverage and treatment options, the disease is remerging as a public health problem especially in infants and older children. Recent data indicate re-emergence of the disease is related to bacterial resistance to immune defences and decreased vaccine effectiveness, which obviously suggests the need of new effective vaccines and drugs. In an attempt to contribute with solutions to this great challenge, bioinformatics tools were used to genetically comprehend the species of these bacteria and predict new vaccines and drug targets. In fact, approaches were used to analysis genomic plasticity, gene synteny and species similarities between the 20 genomes of Bordetella pertussis already available. Furthermore, it was conducted reverse vaccinology and docking analysis to identify proteins with potential to become vaccine and drug targets, respectively. The analyses showed the 20 genomes belongs to a homogeneous group that has preserved most of the genes over time. Besides that, were found genomics islands and good proteins to be candidates for vaccine and drugs. Taken together, these results suggests new possibilities that may be useful to develop new vaccines and drugs that will help the prevention and treatment strategies of pertussis disease caused by these Bordetella strains. Communicated by Ramaswamy H. Sarma.


Assuntos
Bordetella pertussis , Coqueluche , Criança , Humanos , Adolescente , Bordetella pertussis/genética , Coqueluche/prevenção & controle , Coqueluche/microbiologia , Vacina contra Coqueluche/farmacologia , Genômica
3.
J Biomol Struct Dyn ; 40(16): 7496-7510, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33719856

RESUMO

The genus Rickettsia belongs to the Proteobacteria phylum and these bacteria infect animals and humans causing a range of diseases worldwide. The genus is divided into 4 groups and despite the public health threat and the knowledge accumulated so far, the mandatory intracellular bacteria behaviour and limitation for in vitro culture makes it difficult to create new vaccines and drug targets to these bacteria. In an attempt to overcome these limitations, pan-genomic approaches has used 47 genomes of the genus Rickettsia, in order to describe species similarities and genomics islands. Moreover, we conducted reverse vaccinology and docking analysis aiming the identification of proteins that have great potential to become vaccine and drug targets. We found out that the bacteria of the four Rickettsia groups have a high similarity with each other, with about 90 to 100% of identity. A pathogenicity island and a resistance island were predicted. In addition, 8 proteins were also predicted as strong candidates for vaccine and 9 as candidates for drug targets. The prediction of the proteins leads us to believe in a possibility of prospecting potential drugs or creating a polyvalent vaccine, which could reach most strains of this large group of bacteria.Communicated by Ramaswamy H. Sarma.


Assuntos
Rickettsia , Vacinas , Animais , Genoma Bacteriano/genética , Genômica , Humanos , Rickettsia/genética , Fatores de Virulência/genética
4.
Gut Pathog ; 13(1): 27, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910644

RESUMO

BACKGROUND: Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic agent worldwide. The aim of this work was to compare genetically 117 S. Typhimurium isolated from different sources over 30 years in Brazil using different genomics strategies. RESULTS: The majority of the 117 S. Typhimurium strains studied were grouped into a single cluster (≅ 90%) by the core genome multilocus sequence typing and (≅ 77%) by single copy marker genes. The phylogenetic analysis based on single nucleotide polymorphism (SNP) grouped most strains from humans into a single cluster (≅ 93%), while the strains isolated from food and swine were alocated into three clusters. The different orthologous protein clusters found for some S. Typhimurium isolated from humans and food are involved in metabolic and regulatory processes. For 26 isolates from swine the sequence types (ST) 19 and ST1921 were the most prevalent ones, and the ST14, ST64, ST516 and ST639 were also detected. Previous results typed the 91 S. Typhimurium isolates from humans and foods as ST19, ST313, ST1921, ST3343 and ST1649. The main prophages detected were: Gifsy-2 in 79 (67.5%) and Gifsy-1 in 63 (54%) strains. All of the S. Typhimurium isolates contained the acrA, acrB, macA, macB, mdtK, emrA, emrB, emrR and tolC efflux pump genes. CONCLUSIONS: The phylogenetic trees grouped the majority of the S. Typhimurium isolates from humans into a single cluster suggesting that there is one prevalent subtype in Brazil. Regarding strains isolated from food and swine, the SNPs' results suggested the circulation of more than one subtype over 30 years in this country. The orthologous protein clusters analysis revealed unique genes in the strains studied mainly related to bacterial metabolism. S. Typhimurium strains from swine showed greater diversity of STs and prophages in comparison to strains isolated from humans and foods. The pathogenic potential of S. Typhimurium strains was corroborated by the presence of exclusive prophages of this serovar involved in its virulence. The high number of resistance genes related to efflux pumps is worrying and may lead to therapeutic failures when clinical treatment is needed.

5.
Braz J Microbiol ; 51(1): 53-64, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31728978

RESUMO

Salmonella Typhimurium sequence type 313 (S. Typhimurium ST313) has caused invasive disease mainly in sub-Saharan Africa. In Brazil, ST313 strains have been recently described, and there is a lack of studies that assessed by whole genome sequencing (WGS)-the relationship of these strains. The aims of this work were to study the phylogenetic relationship of 70 S. Typhimurium genomes comparing strains of ST313 (n = 9) isolated from humans and food in Brazil among themselves, with other STs isolated in this country (n = 31) and in other parts of the globe (n = 30) by 16S rRNA sequences, the Gegenees software, whole genome multilocus sequence typing (wgMLST), and average nucleotide identity (ANI) for the genomes of ST313. Additionally, pangenome analysis was performed to verify the heterogeneity of these genomes. The phylogenetic analyses showed that the ST313 genomes were very similar among themselves. However, the ST313 genomes were usually clustered more distantly to other STs of strains isolated in Brazil and in other parts of the world. By pangenome calculation, the core genome was 2,880 CDSs and 4,171 CDSs singletons for all the 70 S. Typhimurium genomes studied. Considering the 10 ST313 genomes analyzed the core genome was 4,112 CDSs and 76 CDSs singletons. In conclusion, the ST313 genomes from Brazil showed a high similarity among them which information might eventually help in the development of vaccines and antibiotics. The pangenome analysis showed that the S. Typhimurium genomes studied presented an open pangenome, but specifically tending to become close for the ST313 strains.


Assuntos
Microbiologia de Alimentos , Genoma Bacteriano , Filogenia , Salmonella typhimurium/classificação , Técnicas de Tipagem Bacteriana , Brasil , Fezes/microbiologia , Genômica , Genótipo , Humanos , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Infecções por Salmonella/microbiologia , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
6.
R Soc Open Sci ; 6(7): 190907, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417766

RESUMO

Pneumonia is an infectious disease caused by bacteria, viruses or fungi that results in millions of deaths globally. Despite the existence of prophylactic methods against some of the major pathogens of the disease, there is no efficient prophylaxis against atypical agents such as Mycoplasma pneumoniae, a bacterium associated with cases of community-acquired pneumonia. Because of the morphological peculiarity of M. pneumoniae, which leads to an increased resistance to antibiotics, studies that prospectively investigate the development of vaccines and drug targets appear to be one of the best ways forward. Hence, in this paper, bioinformatics tools were used for vaccine and pharmacological prediction. We conducted comparative genomic analysis on the genomes of 88 M. pneumoniae strains, as opposed to a reverse vaccinology analysis, in relation to the capacity of M. pneumoniae proteins to bind to the major histocompatibility complex, revealing seven targets with immunogenic potential. Predictive cytoplasmic proteins were tested as potential drug targets by studying their structures in relation to other proteins, metabolic pathways and molecular anchorage, which identified five possible drug targets. These findings are a valuable addition to the development of vaccines and the selection of new in vivo drug targets that may contribute to further elucidating the molecular basis of M. pneumoniae-host interactions.

7.
Microbiome ; 6(1): 65, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615108

RESUMO

BACKGROUND: Viral metagenomic studies have suggested a role for bacteriophages in intestinal dysbiosis associated with several human diseases. However, interpretation of viral metagenomic studies is limited by the lack of knowledge of phages infecting major human gut commensal bacteria, such as Faecalibacterium prausnitzii, a bacterial symbiont repeatedly found depleted in inflammatory bowel disease (IBD) patients. In particular, no complete genomes of phages infecting F. prausnitzii are present in viral databases. METHODS: We identified 18 prophages in 15 genomes of F. prausnitzii, used comparative genomics to define eight phage clades, and annotated the genome of the type phage of each clade. For two of the phages, we studied prophage induction in vitro and in vivo in mice. Finally, we aligned reads from already published viral metagenomic data onto the newly identified phages. RESULTS: We show that each phage clade represents a novel viral genus and that a surprisingly large fraction of them (10 of the 18 phages) codes for a diversity-generating retroelement, which could contribute to their adaptation to the digestive tract environment. We obtained either experimental or in silico evidence of activity for at least one member of each genus. In addition, four of these phages are either significantly more prevalent or more abundant in stools of IBD patients than in those of healthy controls. CONCLUSION: Since IBD patients generally have less F. prausnitzii in their microbiota than healthy controls, the higher prevalence or abundance of some of its phages may indicate that they are activated during disease. This in turn suggests that phages could trigger or aggravate F. prausnitzii depletion in patients. Our results show that prophage detection in sequenced strains of the microbiota can usefully complement viral metagenomic studies.


Assuntos
Bacteriófagos/fisiologia , Faecalibacterium prausnitzii/virologia , Microbioma Gastrointestinal , Animais , Bacteriófagos/ultraestrutura , Biodiversidade , Colite/etiologia , Dano ao DNA , Disbiose , Genoma Viral , Humanos , Doenças Inflamatórias Intestinais/etiologia , Metagenoma , Metagenômica/métodos , Camundongos , Retroelementos , Simbiose
8.
Front Microbiol ; 8: 1937, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075239

RESUMO

This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium, exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium. Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.

9.
Front Microbiol ; 8: 1790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970823

RESUMO

Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium, but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium. For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii, which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii, but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.

10.
PLoS One ; 12(10): e0186401, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049350

RESUMO

Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983) were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.


Assuntos
Corynebacterium diphtheriae/patogenicidade , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/farmacologia , Simulação por Computador , Corynebacterium diphtheriae/efeitos dos fármacos , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/metabolismo , Genoma Bacteriano , Humanos , Ligantes , Modelos Biológicos , Simulação de Acoplamento Molecular
11.
J Genomics ; 5: 68-70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698737

RESUMO

Pasteurella multocida is one of the most frequently isolated bacteria in acute pneumonia cases, being responsible for high mortality rates in Peruvian young alpacas, with consequent social and economic costs. Here we report the genome sequence of P. multocida strain UNMSM, isolated from the lung of an alpaca diagnosed with pneumonia, in Peru. The genome consists of 2,439,814 base pairs assembled into 82 contigs and 2,252 protein encoding genes, revealing the presence of known virulence-associated genes (ompH, ompA, tonB, tbpA, nanA, nanB, nanH, sodA, sodC, plpB and toxA). Further analysis could provide insights about bacterial pathogenesis and control strategies of this disease in Peruvian alpacas.

12.
Front Microbiol ; 8: 1226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713353

RESUMO

Faecalibacterium prausnitzii is a major member of the Firmicutes phylum and one of the most abundant bacteria in the healthy human microbiota. F. prausnitzii depletion has been reported in several intestinal disorders, and more consistently in Crohn's disease (CD) patients. Despite its importance in human health, only few microbiological studies have been performed to isolate novel F. prausnitzii strains in order to better understand the biodiversity and physiological diversity of this beneficial commensal species. In this study, we described a protocol to isolate novel F. prausnitzii strains from feces of healthy volunteers as well as a deep molecular and metabolic characterization of these isolated strains. These F. prausnitzii strains were classified in two phylogroups and three clusters according to 16S rRNA sequences and results support that they would belong to two different genomospecies or genomovars as no genome sequencing has been performed in this work. Differences in enzymes production, antibiotic resistance and immunomodulatory properties were found to be strain-dependent. So far, all F. prausnitzii isolates share some characteristic such as (i) the lack of epithelial cells adhesion, plasmids, anti-microbial, and hemolytic activity and (ii) the presence of DNAse activity. Furthermore, Short Chain Fatty Acids (SCFA) production was assessed for the novel isolates as these products influence intestinal homeostasis. Indeed, the butyrate production has been correlated to the capacity to induce IL-10, an anti-inflammatory cytokine, in peripheral blood mononuclear cells (PBMC) but not to the ability to block IL-8 secretion in TNF-α-stimulated HT-29 cells, reinforcing the hypothesis of a complex anti-inflammatory pathway driven by F. prausnitzii. Altogether, our results suggest that some F. prausnitzii strains could represent good candidates as next-generation probiotic.

13.
PLoS One ; 12(4): e0175116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384209

RESUMO

Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.


Assuntos
Genes Bacterianos , Lactococcus lactis/genética , Probióticos , Estresse Fisiológico , Ácidos e Sais Biliares/farmacologia , Farmacorresistência Bacteriana , Técnicas In Vitro , Lactococcus lactis/efeitos dos fármacos
14.
PLoS One ; 12(1): e0170676, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125655

RESUMO

Seven genomes of Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, generating high-quality scaffolds over 2.35 Mbp. This bacterium is the causative agent of disease known as "pigeon fever" which commonly affects horses worldwide. The pangenome of biovar equi was calculated and two phylogenomic approaches were used to identify clustering patterns within Corynebacterium genus. Furthermore, other comparative analyses were performed including the prediction of genomic islands and prophages, and SNP-based phylogeny. In the phylogenomic tree, C. pseudotuberculosis was divided into two distinct clades, one formed by nitrate non-reducing species (biovar ovis) and another formed by nitrate-reducing species (biovar equi). In the latter group, the strains isolated from California were more related to each other, while the strains CIP 52.97 and 1/06-A formed the outermost clade of the biovar equi. A total of 1,355 core genes were identified, corresponding to 42.5% of the pangenome. This pangenome has one of the smallest core genomes described in the literature, suggesting a high genetic variability of biovar equi of C. pseudotuberculosis. The analysis of the similarity between the resistance islands identified a higher proximity between the strains that caused more severe infectious conditions (infection in the internal organs). Pathogenicity islands were largely conserved between strains. Several genes that modulate the pathogenicity of C. pseudotuberculosis were described including peptidases, recombination enzymes, micoside synthesis enzymes, bacteriocins with antimicrobial activity and several others. Finally, no genotypic differences were observed between the strains that caused the three different types of infection (external abscess formation, infection with abscess formation in the internal organs, and ulcerative lymphangitis). Instead, it was noted that there is a higher phenetic correlation between strains isolated at California compared to the other strains. Additionally, high variability of resistance islands suggests gene acquisition through several events of horizontal gene transfer.


Assuntos
Infecções por Corynebacterium/genética , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano/genética , Doenças dos Cavalos/genética , Rhodococcus equi/genética , Animais , Infecções por Corynebacterium/microbiologia , Corynebacterium pseudotuberculosis/patogenicidade , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Doenças dos Cavalos/microbiologia , Cavalos/microbiologia , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Rhodococcus equi/patogenicidade
15.
Genet Mol Biol ; 39(4): 665-673, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560837

RESUMO

Apolipoprotein E (apo E) is a human glycoprotein with 299 amino acids, and it is a major component of very low density lipoproteins (VLDL) and a group of high-density lipoproteins (HDL). Phylogenetic studies are important to clarify how various apo E proteins are related in groups of organisms and whether they evolved from a common ancestor. Here, we aimed at performing a phylogenetic study on apo E carrying organisms. We employed a classical and robust method, such as Maximum Likelihood (ML), and compared the results using a more recent approach based on complex networks. Thirty-two apo E amino acid sequences were downloaded from NCBI. A clear separation could be observed among three major groups: mammals, fish and amphibians. The results obtained from ML method, as well as from the constructed networks showed two different groups: one with mammals only (C1) and another with fish (C2), and a single node with the single sequence available for an amphibian. The accordance in results from the different methods shows that the complex networks approach is effective in phylogenetic studies. Furthermore, our results revealed the conservation of apo E among animal groups.

16.
Genome Announc ; 4(4)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27469956

RESUMO

Corynebacterium ulcerans is an emergent pathogen infecting wild and domesticated animals worldwide that may serve as reservoirs for zoonotic infections. In this study, we present the draft genome of C. ulcerans strain 03-8664. The draft genome has 2,428,683 bp, 2,262 coding sequences, and 12 rRNA genes.

17.
Stand Genomic Sci ; 11: 39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274785

RESUMO

Streptococcus agalactiae, also referred to as Group B Streptococcus, is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. The pathogen can also infect adults with underlying disease, particularly the elderly and immunocompromised ones. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. This study provides valuable structural, functional and evolutionary genomic information of a human S. agalactiae serotype Ia (ST-103) GBS85147 strain isolated from the oropharynx of an adult patient from Rio de Janeiro, thereby representing the first human isolate in Brazil. We used the Ion Torrent PGM platform with the 200 bp fragment library sequencing kit. The sequencing generated 578,082,183 bp, distributed among 2,973,022 reads, resulting in an approximately 246-fold mean coverage depth and was assembled using the Mira Assembler v3.9.18. The S. agalactiae strain GBS85147 comprises of a circular chromosome with a final genome length of 1,996,151 bp containing 1,915 protein-coding genes, 18 rRNA, 63 tRNA, 2 pseudogenes and a G + C content of 35.48 %.

18.
Genome Announc ; 4(2)2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27034486

RESUMO

Corynebacterium ulceransis a pathogenic bacterium infecting wild and domesticated animals; some infection cases in humans have increased throughout the world. The current study describes the draft genome of strain 04-3911, isolated from humans. The draft genome has 2,492,680 bp, 2,143 coding sequences, 12 rRNA genes, and 50 tRNA genes.

19.
Genome Announc ; 4(2)2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27034487

RESUMO

Here, we present the draft genome of toxigenicCorynebacterium ulceransstrain 04-7514. The draft genome has 2,497,845 bp, 2,059 coding sequences, 12 rRNA genes, 46 tRNA genes, 150 pseudogenes, 1 clustered regularly interspaced short palindromic repeat (CRISPR) array, and a G+C content of 53.50%.

20.
BMC Bioinformatics ; 17(Suppl 18): 456, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105921

RESUMO

BACKGROUND: The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. RESULTS: In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. CONCLUSION: Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Mineração de Dados/métodos , Genoma Bacteriano , Bactérias/classificação , Bactérias/isolamento & purificação , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA