Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-23234807

RESUMO

During the past 20 years, our work on root development has been influenced by and has contributed to three biological approaches: molecular genetics, genomics, and systems biology. Characterization of mutations that affect root radial patterning led to the identification of a transcription factor that acts as both a signaling molecule and a key developmental regulator. Combining cell sorting with microarray analysis provided a platform for determining genome-wide expression profiles of mRNAs under standard and stress conditions, revealing a vast amount of tissue-specific response. A focus on connections among molecular components identified a tissue-specific gene regulatory network and a clock-like process that determines the position of lateral roots along the primary root axis. Finally, the genetic basis for the physical network of different roots that constitutes root system architecture is being dissected using automated imaging of growing root systems.


Assuntos
Raízes de Plantas/genética , Biologia de Sistemas , Padronização Corporal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Raízes de Plantas/crescimento & desenvolvimento
2.
Nature ; 466(7302): 128-32, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596025

RESUMO

The development of multicellular organisms relies on the coordinated control of cell divisions leading to proper patterning and growth. The molecular mechanisms underlying pattern formation, particularly the regulation of formative cell divisions, remain poorly understood. In Arabidopsis, formative divisions generating the root ground tissue are controlled by SHORTROOT (SHR) and SCARECROW (SCR). Here we show, using cell-type-specific transcriptional effects of SHR and SCR combined with data from chromatin immunoprecipitation-based microarray experiments, that SHR regulates the spatiotemporal activation of specific genes involved in cell division. Coincident with the onset of a specific formative division, SHR and SCR directly activate a D-type cyclin; furthermore, altering the expression of this cyclin resulted in formative division defects. Our results indicate that proper pattern formation is achieved through transcriptional regulation of specific cell-cycle genes in a cell-type- and developmental-stage-specific context. Taken together, we provide evidence for a direct link between developmental regulators, specific components of the cell-cycle machinery and organ patterning.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Padronização Corporal/genética , Padronização Corporal/fisiologia , Genes cdc/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/genética , Ciclina D/genética , Ciclina D/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica de Plantas , Organogênese/genética , Organogênese/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Tempo , Fatores de Transcrição/genética
3.
Genome Res ; 11(9): 1567-73, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11544201

RESUMO

We report a simple new algorithm, cis/TF, that uses genomewide expression data and the full genomic sequence to match transcription factors to their binding sites. Most previous computational methods discovered binding sites by clustering genes having similar expression patterns and then identifying over-represented subsequences in the promoter regions of those genes. By contrast, cis/TF asserts that B is a likely binding site of a transcription factor T if the expression pattern of T is correlated to the composite expression patterns of all genes containing B, even when those genes are not mutually correlated. Thus, our method focuses on binding sites rather than genes. The algorithm has successfully identified experimentally-supported transcription factor binding relationships in tests on several data sets from Saccharomyces cerevisiae.


Assuntos
Elementos de Resposta/genética , Fatores de Transcrição/genética , Algoritmos , Reações Falso-Positivas , Perfilação da Expressão Gênica/métodos , Mutagênese Sítio-Dirigida/genética , Saccharomyces cerevisiae/genética , Sensibilidade e Especificidade , Deleção de Sequência , Software
4.
Nature ; 413(6853): 307-11, 2001 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-11565032

RESUMO

Positional information is pivotal for establishing developmental patterning in plants, but little is known about the underlying signalling mechanisms. The Arabidopsis root radial pattern is generated through stereotyped division of initial cells and the subsequent acquisition of cell fate. short-root (shr) mutants do not undergo the longitudinal cell division of the cortex/endodermis initial daughter cell, resulting in a single cell layer with only cortex attributes. Thus, SHR is necessary for both cell division and endodermis specification. SHR messenger RNA is found exclusively in the stele cells internal to the endodermis and cortex, indicating that it has a non-cell-autonomous mode of action. Here we show that the SHR protein, a putative transcription factor, moves from the stele to a single layer of adjacent cells, where it enters the nucleus. Ectopic expression of SHR driven by the promoter of the downstream gene SCARECROW (SCR) results in autocatalytic reinforcement of SHR signalling, producing altered cell fates and multiplication of cell layers. These results support a model in which SHR protein acts both as a signal from the stele and as an activator of endodermal cell fate and SCR-mediated cell division.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/citologia , Raízes de Plantas/citologia , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Glucuronidase/genética , Plantas Geneticamente Modificadas , Transporte Proteico , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
5.
Curr Opin Genet Dev ; 11(4): 405-9, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11448626

RESUMO

We have recently gained insight into a number of mechanisms governing the formation of the major axes that define the embryonic and adult plant body plan. Phenotypic analysis and molecular characterization of mutants with aberrant morphogenesis has led to a better understanding of key processes including the generation of the shape of the apical embryo, the establishment and maintenance of the radial pattern of the root, and the placement of lateral organ primordia around the shoot apical meristem.


Assuntos
Genes de Plantas/fisiologia , Plantas/embriologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas/genética
6.
Genes Dev ; 15(9): 1115-27, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11331607

RESUMO

To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/citologia , Arabidopsis/genética , Polaridade Celular/fisiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Sequência de Aminoácidos , Apoproteínas , Arabidopsis/metabolismo , Sequência de Bases , Membrana Celular/metabolismo , Celulose/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Grupo dos Citocromos b , Citocromos b , Regulação da Expressão Gênica de Plantas , Glicosilfosfatidilinositóis/metabolismo , Dados de Sequência Molecular , Mutação , Raízes de Plantas/citologia , RNA de Plantas/metabolismo
9.
Genes Dev ; 14(23): 2938-43, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11114883

RESUMO

The developmental ontogeny of the vascular system (consisting of xylem, phloem and [pro]cambium) is poorly understood despite its central role in plant physiology. We show that in the Arabidopsis root meristem, xylem cell lineages are specified early, whereas phloem and procambium are established through a set of asymmetric cell divisions. These divisions require the WOODEN LEG (WOL) gene. The WOL gene encodes a novel two-component signal transducer with an unusual tandem arrangement of two receiver domains. It is expressed specifically in the vasculature from the early stages of embryogenesis on, consistent with a role as a sensor for vascular morphogenesis.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Divisão Celular , DNA de Plantas , Histidina Quinase , Dados de Sequência Molecular , Morfogênese , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/fisiologia
10.
Curr Biol ; 10(22): R813-5, 2000 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-11102819
11.
Plant Cell ; 12(8): 1307-18, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10948251

RESUMO

Maize and Arabidopsis root apical meristems differ in several aspects of their radial organization and ontogeny. Despite the large evolutionary distance and differences in root radial patterning, analysis of the putative maize ortholog of the Arabidopsis patterning gene SCARECROW (SCR) revealed expression localized to the endodermis, which is similar to its expression in Arabidopsis. Expression in maize extends through the quiescent center, a population of mitotically inactive cells formerly thought to be undifferentiated and to lack radial pattern information. Zea mays SCARECROW (ZmSCR), the putative maize SCR ortholog, was used as a molecular marker to investigate radial patterning during regeneration of the root tip after either whole or partial excision. Analysis of the dynamic expression pattern of ZmSCR as well as other markers indicates the involvement of positional information as a primary determinant in regeneration of the root radial pattern.


Assuntos
Proteínas de Arabidopsis , Padronização Corporal , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento , Sequência de Aminoácidos , Biomarcadores/análise , Diferenciação Celular , Linhagem da Célula , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Meristema/citologia , Meristema/genética , Mitose , Dados de Sequência Molecular , Especificidade de Órgãos , Proteínas de Plantas/química , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA de Plantas/análise , RNA de Plantas/genética , Regeneração , Alinhamento de Sequência , Zea mays/citologia , Zea mays/genética
12.
Cell ; 101(5): 555-67, 2000 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-10850497

RESUMO

Asymmetric cell divisions play an important role in the establishment and propagation of the cellular pattern of plant tissues. The SHORT-ROOT (SHR) gene is required for the asymmetric cell division responsible for formation of ground tissue (endodermis and cortex) as well as specification of endodermis in the Arabidopsis root. We show that SHR encodes a putative transcription factor with homology to SCARECROW (SCR). From analyses of gene expression and cell identity in genetically stable and unstable alleles of shr, we conclude that SHR functions upstream of SCR and participates in a radial signaling pathway. Consistent with a regulatory role in radial patterning, ectopic expression of SHR results in supernumerary cell divisions and abnormal cell specification in the root meristem.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Diferenciação Celular , Divisão Celular , Clonagem Molecular , Elementos de DNA Transponíveis , DNA de Plantas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento
13.
Development ; 127(3): 595-603, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10631180

RESUMO

Mutation of the SCARECROW (SCR) gene results in a radial pattern defect, loss of a ground tissue layer, in the root. Analysis of the shoot phenotype of scr mutants revealed that both hypocotyl and shoot inflorescence also have a radial pattern defect, loss of a normal starch sheath layer, and consequently are unable to sense gravity in the shoot. Analogous to its expression in the endodermis of the root, SCR is expressed in the starch sheath of the hypocotyl and inflorescence stem. The SCR expression pattern in leaf bundle sheath cells and root quiescent center cells led to the identification of additional phenotypic defects in these tissues. SCR expression in a pin-formed mutant background suggested the possible origins of the starch sheath in the shoot inflorescence. Analysis of SCR expression and the mutant phenotype from the earliest stages of embryogenesis revealed a tight correlation between defective cell divisions and SCR expression in cells that contribute to ground tissue radial patterning in both embryonic root and shoot. Our data provides evidence that the same molecular mechanism regulates the radial patterning of ground tissue in both root and shoot during embryogenesis as well as postembryonically.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/fisiologia , Proteínas de Plantas/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/fisiologia , Caules de Planta/citologia , Caules de Planta/fisiologia , Sementes/fisiologia
14.
Cell ; 99(5): 463-72, 1999 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-10589675

RESUMO

Root formation in plants involves the continuous interpretation of positional cues. Physiological studies have linked root formation to auxins. An auxin response element displays a maximum in the Arabidopsis root and we investigate its developmental significance. Auxin response mutants reduce the maximum or its perception, and interfere with distal root patterning. Polar auxin transport mutants affect its localization and distal pattern. Polar auxin transport inhibitors cause dramatic relocalization of the maximum, and associated changes in pattern and polarity. Auxin application and laser ablations correlate root pattern with a maximum adjacent to the vascular bundle. Our data indicate that an auxin maximum at a vascular boundary establishes a distal organizer in the root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Comunicação Celular , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras , Morfogênese , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Transporte Biológico/genética , Proteínas de Transporte , Polaridade Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Modelos Biológicos , Proteínas de Plantas , Raízes de Plantas/anatomia & histologia , Fatores de Transcrição/genética
15.
Plant J ; 18(1): 111-9, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10341448

RESUMO

Mutations at the SCARECROW (SCR) locus in Arabidopsis thaliana result in defective radial patterning in the root and shoot. The SCR gene product contains sequences which suggest that it is a transcription factor. A number of Arabidopsis Expressed Sequence Tags (ESTs) have been identified that encode gene products bearing remarkable similarity to SCR throughout their carboxyl-termini, indicating that SCR is the prototype of a novel gene family. These ESTs have been designated SCARECROW-LIKE (SCL). The gene products of the GIBBERELLIN-INSENSITIVE (GAI) and the REPRESSOR of ga1-3 (RGA) loci show high structural and sequence similarity to SCR and the SCLs. Sequence analysis of the products of the GRAS (GAI, RGA, SCR) gene family indicates that they share a variable amino-terminus and a highly conserved carboxyl-terminus that contains five recognizable motifs. The SCLs have distinct patterns of expression, but all of those analyzed show expression in the root. One of them, SCL3, has a tissue-specific pattern of expression in the root similar to SCR. The importance of the GRAS gene family in plant biology has been established by the functional analyses of SCR, GAI and RGA.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Correpressoras/genética , Genes de Plantas , Família Multigênica , Sequência de Aminoácidos , Sequência Conservada , Evolução Molecular , Expressão Gênica , Hibridização In Situ , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
16.
Curr Biol ; 9(5): R171-2, 1999 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-10074441

RESUMO

Homologous genes have recently been shown to regulate stem cell maintenance in animals and plants. This discovery should facilitate elucidation of the poorly understood factors that control stem cell maintenance and differentiation.


Assuntos
Proteínas de Arabidopsis , Diferenciação Celular/genética , Células-Tronco/citologia , Animais , Arabidopsis , Proteínas Argonautas , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans , Proteínas de Drosophila , Humanos , Proteínas de Insetos/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Proteínas/genética , Proteínas/fisiologia , Complexo de Inativação Induzido por RNA
17.
Curr Opin Plant Biol ; 2(1): 39-43, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10047569

RESUMO

Recently, it has been shown that the same sets of genes act in both root and shoot to regulate cell fate and patterning. One gene cassette regulates epidermal cell fate, another cassette regulates ground tissue derived cell fate and organization. Ectopic expression and laser ablation have been used to probe the mechanisms by which these genes perform their tissue and organ-specific functions.


Assuntos
Plantas/embriologia , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Vegetais , Plantas/genética , Transdução de Sinais
18.
Plant J ; 14(4): 425-30, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9670559

RESUMO

Shoots of higher plants exhibit negative gravitropism. However, little is known about the mechanism or site of gravity perception in shoots. We have identified two loci that are essential for normal shoot gravitropism in Arabidopsis thaliana. Genetic analysis demonstrated that the shoot gravitropism mutants sgr1 and sgr7 are allelic to the radial pattern mutants, scr and shr, respectively. Characterization of the aerial phenotype of these mutants revealed that the primary defect is the absence of a normal endodermis in hypocotyls and influorescence stems. This indicates that the endodermis is essential for shoot gravitropism and strongly suggests that this cell layer functions as the gravity-sensing cell layer in dicotyledonous plant shoots. These results also demonstrate that, in addition to their previously characterized role in root radial patterning, SCR and SHR regulate the radial organization of the shoot axial organs in Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Gravitropismo , Arabidopsis/citologia , Arabidopsis/genética , Nêutrons Rápidos , Mutagênese , Brotos de Planta/fisiologia , Amido/fisiologia
19.
Bioessays ; 19(11): 959-65, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9394618

RESUMO

Because of its elegant simplicity, the Arabidopsis root has become a model for studying plant organogenesis. In this review we focus on recent results indicating the importance of signaling in root development. A role for positional information in root cell specification has been demonstrated by ablation analyses. Through mutational analysis, genes have been identified that play a role in radial pattern formation. The embryonic phenotypes of these mutants raised the possibility that division patterns in post-embryonic roots are dependent on signaling that originates during embryonic development. Analysis of expression of the SCARECROW gene indicates that it may play a role in this 'top-down' signaling process. Characterization of root epidermis development has led to the identification of negative regulators of root-hair formation. These appear to set up a prepattern which is reinforced by signaling by plant hormones.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/embriologia , Arabidopsis/genética , Diferenciação Celular , Modelos Biológicos , Mutação , Proteínas de Plantas/genética , Transdução de Sinais
20.
Development ; 124(1): 33-44, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9006065

RESUMO

Lateral root formation in plants involves the stimulation of mature pericycle cells to proliferate and redifferentiate to create a new organ. The simple organization of the root of Arabidopsis thaliana allows the development of lateral root primordia to be characterized histologically. We have divided the process of lateral root development into 8 stages defined by specific anatomical characteristics and cell divisions. To identify the cell types in the developing primordium we have generated a collection of marker lines that express beta-glucuronidase in a tissue- or cell type-specific manner in the root. Using these tools we have constructed a model describing the lineage of each cell type in the lateral root. These studies show that organization and cell differentiation in the lateral root primordia precede the appearance of a lateral root meristem, with differential gene expression apparent after the first set of divisions of the pericycle.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/citologia , Diferenciação Celular , Divisão Celular , Meristema , Raízes de Plantas , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA