Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 826: 154115, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35219665

RESUMO

Anthropogenic climate change and landscape alteration are two of the most important threats to the terrestrial and aquatic ecosystems of the tropical Americas, thus jeopardizing water and soil resources for millions of people in the Andean nations. Understanding how aquatic ecosystems will respond to anthropogenic stressors and accelerated warming requires shifting from short-term and static to long-term, dynamic characterizations of human-terrestrial-aquatic relationships. Here we use sediment records from Lake Llaviucu, a tropical mountain Andean lake long accessed by Indigenous and post-European societies, and hypothesize that under natural historical conditions (i.e., low human pressure) vegetation and aquatic ecosystems' responses to change are coupled through indirect climate influences-that is, past climate-driven vegetation changes dictated limnological trajectories. We used a multi-proxy paleoecological approach including drivers of terrestrial vegetation change (pollen), soil erosion (Titanium), human activity (agropastoralism indicators), and aquatic responses (diatoms) to estimate assemblage-wide rates of change and model their synchronous and asynchronous (lagged) relationships using Generalized Additive Models. Assemblage-wide rate of change results showed that between ca. 3000 and 400 calibrated years before present (cal years BP) terrestrial vegetation, agropastoralism and diatoms fluctuated along their mean regimes of rate of change without consistent periods of synchronous rapid change. In contrast, positive lagged relationships (i.e., asynchrony) between climate-driven terrestrial pollen changes and diatom responses (i.e., asynchrony) were in operation until ca. 750 cal years BP. Thereafter, positive lagged relationships between agropastoralism and diatom rates of changes dictated the lake trajectory, reflecting the primary control of human practices over the aquatic ecosystem prior European occupation. We interpret that shifts in Indigenous practices (e.g., valley terracing) curtailed nutrient inputs into the lake decoupling the links between climate-driven vegetation changes and the aquatic community. Our results demonstrate how rates of change of anthropogenic and climatic influences can guide dynamic ecological baselines for managing water ecosystem services in the Andes.


Assuntos
Mudança Climática , Diatomáceas , Diatomáceas/fisiologia , Ecossistema , Sedimentos Geológicos , Humanos , Lagos , Água
2.
Sci Total Environ ; 655: 1376-1386, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577129

RESUMO

River deltas are ecologically and economically valuable coastal ecosystems but low elevations make them extremely sensitive to relative sea level rise (RSLR), i.e. the combined effects of sea level rise and subsidence. Most deltas are subjected to extensive human exploitation, which has altered the habitat composition, connectivity and geomorphology of deltaic landscapes. In the Ebro Delta, extensive wetland reclamation for rice cultivation over the last 150 years has resulted in the loss of 65% of the natural habitats. Here, we compare the dynamics of habitat shifts under two departure conditions (a simulated pristine delta vs. the human-altered delta) using the Sea Level Affecting Marshes Model (SLAMM) under the 4.5 and 8.5 RCP (Representative Concentration Pathways) scenarios for evaluating their resilience to RSLR (i.e. resistance to inundation). Results showed lower inundation rates in the human delta (~10 to 22% by the end of the century, depending on RCP conditions), mostly due to ~4.5 times lower initial extension of coastal lagoons compared to the pristine delta. Yet, inundation rates from ~15 to 30% of the total surface represent the worst possible human scenario, assuming no flooding protection measures. Besides, accretion rates within rice fields are disregarded since this option is not available in SLAMM for developed dry land. In the human delta, rice fields were largely shifted to other wetland habitats and experienced the highest reductions, mostly because of their larger surface. In contrast, in the pristine delta most of the habitats showed significant decreases by 2100 (~2 to 32% of the surface). Coastal infrastructures (dykes or flood protection dunes) and reintroduction of riverine sediments through irrigation channels are proposed to minimize impacts of RSLR. In the worst RCP scenarios, promoting preservation of natural habitats by transforming unproductive rice fields into wetlands could be the most sustainable option.

3.
Ecol Evol ; 8(16): 7865-7878, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250669

RESUMO

Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N-30°S and 58-79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom-environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche- and dispersal-based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context-dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild-based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad-scale community gradients in lake-rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.

4.
Mar Pollut Bull ; 101(1): 163-173, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26563545

RESUMO

Present-day habitats of the Ebro Delta, NE Iberian Peninsula, have been ecologically altered as a consequence of intensive human impacts in the last two centuries (especially rice farming). Benthic foraminiferal palaeoassemblages and sediment characteristics of five short cores were used to reconstruct past wetland habitats, through application of multivariate DCA and CONISS techniques, and dissimilarity coefficients (SCD). The timing of environmental changes was compared to known natural and anthropogenic events in order to identify their possible relationships. In deltaic wetlands under altered hydrological conditions, we found a decrease in species diversity and calcareous-dominated assemblages, and a significant positive correlation between microfaunal changes and organic matter content. Modern analogues supported palaeoenvironmental interpretation of the recent evolution of the Delta wetlands. This research provides the first recent reconstruction of change in the Ebro Delta wetlands, and also illustrates the importance of benthic foraminifera for biomonitoring present and future conditions in Mediterranean deltas.


Assuntos
Monitoramento Ambiental/métodos , Foraminíferos , Áreas Alagadas , Agricultura , Organismos Aquáticos , Ecossistema , Sedimentos Geológicos , Análise Multivariada , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA