RESUMO
An egg of the critically endangered flapper skate Dipturus intermedius was successfully incubated to hatching in captivity in what is believed to be a first for the species. Water conditions (temperature, salinity, flow rate) were recorded, with mean water temperatures ranging from a monthly mean of 8.3 ± 1.2 to 13.2 ± 0.3°C and salinity from a monthly mean of 30.5 ± 1.2 to 36.6 ± 2.3 ppt. Hatching occurred after 534 days, suggesting that flapper skate eggs take c. 5700 growing degree-days to incubate to hatching. The egg's prolonged embryonic development raises concerns about flapper skate eggs' vulnerability to anthropogenic disturbance.
Assuntos
Rajidae , Animais , Desenvolvimento Embrionário , Salinidade , Temperatura , ÁguaRESUMO
"Blue Growth" and "Blue Economy" is defined by the World Bank as: "the sustainable use of ocean resources for economic growth, improved livelihoods and jobs, while preserving the health of ocean ecosystem". Multi-purpose platforms (MPPs) can be defined as offshore platforms serving the needs of multiple offshore industries (energy and aquaculture), aim at exploiting the synergies and managing the tensions arising when closely co-locating systems from these industries. Despite a number of previous projects aimed at assessing, from a multidisciplinary point of view, the feasibility of multipurpose platforms, it is here shown that the state-of-the-art has focused mainly on single-purpose devices, and adopting a single discipline (either economic, or social, or technological, or environmental) approach. Therefore, the aim of the present study is to provide a multidisciplinary state of the art review on, whenever possible, multi-purpose platforms, complementing it with single-purpose and/or single discipline literature reviews when not possible. Synoptic tables are provided, giving an overview of the multi-purpose platform concepts investigated, the numerical approaches adopted, and a comprehensive snapshot classifying the references discussed by industry (offshore renewables, aquaculture, both) and by aspect (technological, environmental, socio-economic). The majority of the multi-purpose platform concepts proposed are integrating only multiple offshore renewable energy devices (e.g. hybrid wind-wave), with only few integrating also aquaculture systems. MPPs have significant potential in economizing CAPEX and operational costs for the offshore energy and aquaculture industry by means of concerted spatial planning and sharing of infrastructure.
RESUMO
ABSTRACT: Previous studies have found that predators utilise habitat corridors to ambush prey moving through them. In the marine environment, coastal channels effectively act as habitat corridors for prey movements, and sightings of predators in such areas suggest that they may target these for foraging. Unlike terrestrial systems where the underlying habitat structure is generally static, corridors in marine systems are in episodic flux due to water movements created by tidal processes. Although these hydrographic features can be highly complex, there is generally a predictable underlying cyclic tidal pattern to their structure. For marine predators that must find prey that is often patchy and widely distributed, the underlying temporal predictability in potential foraging opportunities in marine corridors may be important drivers in their use. Here, we used data from land-based sightings and 19 harbour seals (Phoca vitulina) tagged with high-resolution GPS telemetry to investigate the spatial and temporal distribution patterns of seals in a narrow tidal channel. These seals showed a striking pattern in their distribution; all seals spent a high proportion of their time around the narrowest point of the channel. There was also a distinctive tidal pattern in the use of the channel; sightings of seals in the water peaked during the flood tide and were at a minimum during the ebb tide. This pattern is likely to be related to prey availability and/or foraging efficiency driven by the underlying tidal pattern in the water movements through the channel. SIGNIFICANCE STATEMENT: To maximise foraging efficiency, predators often make use of narrow constrictions in habitat to intercept prey using these corridors for movement. In the marine environment, narrow channels may act as corridors, and sightings of predators suggest that they may target these for foraging. Despite this, there is little information on how individual predators use such areas. Here, we investigate how individual harbour seals use a narrow coastal channel subject to strong tidal currents; results showed that seals spent the majority of their time at the narrowest point of the channel foraging during peak tidal currents. This highlights the importance of narrow channels for marine predators and suggests that this usually wide-ranging predator may restrict its geographic range to forage in the channel as a result of increased prey availability and/or foraging efficiency driven by water movements through the narrow corridor.