Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15428, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965257

RESUMO

Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance from gene bank accessions into barley breeding programs is essential for the development of leaf rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 barley accessions, were genotyped to conduct a genome-wide association study (GWAS). The results revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling stage using two P. hordei isolates (ISO-SAT and ISO-MRC), and at the adult plant stage in four environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance (SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects in at least two environments for APR, whereas two common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with predicted protein functions in plant disease resistance. These results will provide new perspectives on the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker-assisted selection for the LR resistance in barley breeding programs worldwide.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Hordeum , Doenças das Plantas , Locos de Características Quantitativas , Plântula , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plântula/genética , Plântula/microbiologia , Resistência à Doença/genética , Puccinia/patogenicidade , Genótipo , Polimorfismo de Nucleotídeo Único , Fenótipo , Basidiomycota , Mapeamento Cromossômico , Melhoramento Vegetal
2.
Plants (Basel) ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37176914

RESUMO

Climate change-driven water resource constraints cause tomatoes to suffer from drought. The use of biostimulants has emerged as an important approach to enhancing resilience to drought. However, the roles of biostimulants in the physicochemical characteristics of tomatoes in response to drought are poorly understood. In this study, we evaluated the ability of arbuscular mycorrhizal fungi (AMF) and compost (versus NPK application) to improve the agro-physiology, yield, and fruit quality of tomato plants and their tolerance to drought by comparing them with conventional chemical fertilizers (NPK). Under drought conditions, plant growth traits associated with yield and fruit bioactive compounds (carotenoids: 73%; lycopene: 53%; polyphenols: 310%; and flavonoids: 158%) were increased in the AMF-tomato treatment. Compost significantly enhanced sugars (ca. 60%) and protein contents (ca. 20%). Moreover, AMF protected the photosynthetic apparatus from drought-induced oxidative stress, improved photosynthetic efficiency, leaf water potential, and osmolytes, and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation by increasing peroxidase (POX) (140%) and polyphenol oxidase (PPO) (340%) activities compared to their controls. Our findings revealed that NPK is an important nutrient-based fertilizer for plant growth and development. However, its efficiency as a fertilizer is quite low. In addition, we highlighted different mechanisms mediated by AMF and compost, inducing drought tolerance in tomato plants.

3.
Viruses ; 14(11)2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36366553

RESUMO

Erwinia amylovora is a quarantine phytopathogenic bacterium that is the causal agent of fire blight, a destructive disease responsible for killing millions of fruit-bearing plants worldwide, including apple, pear, quince, and raspberry. Efficient and sustainable control strategies for this serious bacterial disease are still lacking, and traditional methods are limited to the use of antibiotics and some basic agricultural practices. This study aimed to contribute to the development of a sustainable control strategy through the identification, characterization, and application of bacteriophages (phages) able to control fire blight on pears. Phages isolated from wastewater collected in the Apulia region (southern Italy) were characterized and evaluated as antibacterial agents to treat experimental fire blight caused by E. amylovora. Transmission electron microscopy (TEM) conducted on purified phages (named EP-IT22 for Erwinia phage IT22) showed particles with icosahedral heads of ca. 90 ± 5 nm in length and long contractile tails of 100 ± 10 nm, typical of the Myoviridae family. Whole genome sequencing (WGS), assembly, and analysis of the phage DNA generated a single contig of 174.346 bp representing a complete circular genome composed of 310 open reading frames (ORFs). EP-IT22 was found to be 98.48% identical to the Straboviridae Erwinia phage Cronus (EPC) (GenBank Acc. n° NC_055743) at the nucleotide level. EP-IT22 was found to be resistant to high temperatures (up to 60 °C) and pH values between 4 and 11, and was able to accomplish a complete lytic cycle within one hour. Furthermore, the viability-qPCR and turbidity assays showed that EP-IT22 (MOI = 1) lysed 94% of E. amylovora cells in 20 h. The antibacterial activity of EP-IT22 in planta was evaluated in E. amylovora-inoculated pear plants that remained asymptomatic 40 days post inoculation, similarly to those treated with streptomycin sulphate. This is the first description of the morphological, biological, and molecular features of EP-IT22, highlighting its promising potential for biocontrol of E. amylovora against fire blight disease.


Assuntos
Bacteriófagos , Erwinia amylovora , Malus , Erwinia amylovora/genética , Bacteriófagos/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Myoviridae/genética
4.
Plants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616240

RESUMO

Antimicrobial peptides (AMPs) are a various group of molecules found in a wide range of organisms and act as a defense mechanism against different kinds of infectious pathogens (bacteria, viruses, and fungi, etc.). This study explored the antibacterial activity of nine candidates reported in the literature for their effect on human and animal bacteria, (i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) against Erwinia amylovora (E. amylovora), the causal agent of fire blight disease on pome fruits. The antibacterial activity of these peptides against E. amylovora was evaluated in vitro using viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM), while the in vivo control efficacy was evaluated in treating experimental fire blight on pear fruits. With a view to their safe and ecofriendly field use in the future, the study also used animal and plant eukaryotic cells to evaluate the possible toxicity of these AMPs. Results in vitro showed that KL29 was the most potent peptide in inhibiting E. amylovora cell proliferation. In addition, the results of v-qPCR, FM, and TEM showed that KL29 has a bifunctional mechanism of action (lytic and non-lytic) when used at different concentrations against E. amylovora. KL29 reduced fire blight symptoms by 85% when applied experimentally in vivo. Furthermore, it had no impact on animal or plant cells, thus demonstrating its potential for safe use as an antibacterial agent. This study sheds light on a new and potent antibacterial peptide for E. amylovora and its modes of action, which could be exploited to develop sustainable treatments for fire blight.

5.
Environ Sci Pollut Res Int ; 25(30): 29943-29952, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29288304

RESUMO

Allorhizobium (Agrobacterium) vitis is a host-specific pathogenic bacterium that causes grapevine crown gall disease, affecting vine growth and production worldwide. The antibacterial activities of different aromatic plant essential oils were tested in vitro and in planta against A. vitis. Among the essential oils tested, those of Origanum compactum and Thymus vulgaris showed the most significant in vitro antibacterial activities, with a MIC of 0.156 and 0.312 mg/mL, respectively. A synergistic effect of these two essential oils (1:1) was observed and confirmed by the checkerboard test. Carvacrol (61.8%) and thymol (47.8%) are, respectively, the major compounds in the essential oils of O. compactum and T. vulgaris and they have been shown to be largely responsible for the antibacterial activities of their corresponding essential oils. Results obtained in vitro were reinforced by an in planta pathogenicity test. A mixture of O. compactum and T. vulgaris essential oils (1:1), inoculated into the injured stem of a tomato plant and a grapevine at 0.312 mg/mL as a preventive treatment, reduced both the number of plants developing gall symptoms and the size of the tumors.


Assuntos
Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Origanum/química , Doenças das Plantas/microbiologia , Óleos de Plantas/farmacologia , Thymus (Planta)/química , Vitis/microbiologia , Cimenos , Testes de Sensibilidade Microbiana , Monoterpenos/análise , Monoterpenos/farmacologia , Doenças das Plantas/prevenção & controle , Rhizobiaceae/efeitos dos fármacos , Rhizobiaceae/fisiologia , Timol/análise , Timol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA