Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328040

RESUMO

Liver cancer ranks amongst the deadliest cancers. Nerves have emerged as an understudied regulator of tumor progression. The parasympathetic vagus nerve influences systemic immunity via acetylcholine (ACh). Whether cholinergic neuroimmune interactions influence hepatocellular carcinoma (HCC) remains uncertain. Liver denervation via hepatic vagotomy (HV) significantly reduced liver tumor burden, while pharmacological enhancement of parasympathetic tone promoted tumor growth. Cholinergic disruption in Rag1KO mice revealed that cholinergic regulation requires adaptive immunity. Further scRNA-seq and in vitro studies indicated that vagal ACh dampens CD8+ T cell activity via muscarinic ACh receptor (AChR) CHRM3. Depletion of CD8+ T cells abrogated HV outcomes and selective deletion of Chrm3 on CD8 + T cells inhibited liver tumor growth. Beyond tumor-specific outcomes, vagotomy improved cancer-associated fatigue and anxiety-like behavior. As microbiota transplantation from HCC donors was sufficient to impair behavior, we investigated putative microbiota-neuroimmune crosstalk. Tumor, rather than vagotomy, robustly altered fecal bacterial composition, increasing Desulfovibrionales and Clostridial taxa. Strikingly, in tumor-free mice, vagotomy permitted HCC-associated microbiota to activate hepatic CD8+ T cells. These findings reveal that gut bacteria influence behavior and liver anti-tumor immunity via a dynamic and pharmaceutically targetable, vagus-liver axis.

2.
JHEP Rep ; 6(1): 100959, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192537

RESUMO

Backgrounds & Aims: The efficacy of immune checkpoint inhibitor (ICI) therapy for liver cancer remains limited. As the hypoxic liver environment regulates adenosine signaling, we tested the efficacy of adenosine A2a receptor (A2aR) inhibition in combination with ICI treatment in murine models of liver cancer. Methods: RNA expression related to the adenosine pathway was analyzed from public databases. Peripheral blood mononuclear cells of 13 patients with hepatocellular carcinoma (HCC) were examined by flow cytometry. The following murine cell lines were used: SB-1, RIL175, and Hep55.1c (liver cancer), CT26 (colon cancer), and B16-F10 (melanoma). C57BL/6 and BALB/c mice were used for orthotopic tumor models and were treated with SCH58261, an A2aR inhibitor, in combination with anti-PD1 therapy. Results: RNA expression of ADORA2A in tumor tissues derived from patients with HCC was higher than in tissues from other cancer types. A2aR+ T cells in peripheral blood from patients with HCC were highly proliferative after immunotherapy. Likewise, in an orthotopic murine model, A2aR expression on T cells increased following anti-PD1 treatment, and the expression of A2aR on T cells increased more in tumor-bearing mice compared with tumor-free mice. The combination of SCH58261 and anti-PD1 led to activation of T cells and reductions in tumor size in orthotopic liver cancer models. In contrast, SCH58261 monotherapy was ineffective in orthotopic liver cancer models and the combination was ineffective in the subcutaneous tumor models tested. CD4+ T-cell depletion attenuated the efficacy of the combination therapy. Conclusion: A2aR inhibition and anti-PD1 therapy had a synergistic anti-tumor effect in murine liver cancer models. Impact and implications: Adenosine A2a receptor (A2aR)-expressing T cells in the liver increased in tumor-bearing mice and after anti-PD1 treatment. The combination of an A2aR inhibitor and anti-PD1 treatment had potent anti-tumor effects in two murine models of orthotopic liver cancer. Adenosine A2a receptor blockade promotes immunotherapy efficacy in murine models, highlighting putative clinical benefits for advanced stage liver cancer patients.

3.
Gut ; 73(3): 509-520, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-37770128

RESUMO

OBJECTIVE: Liver metastases are often resistant to immune checkpoint inhibitor therapy (ICI) and portend a worse prognosis compared with metastases to other locations. Regulatory T cells (Tregs) are one of several immunosuppressive cells implicated in ICI resistance of liver tumours, but the role played by Tregs residing within the liver surrounding a tumour is unknown. DESIGN: Flow cytometry and single-cell RNA sequencing were used to characterise hepatic Tregs before and after ICI therapy. RESULTS: We found that the murine liver houses a Treg population that, unlike those found in other organs, is both highly proliferative and apoptotic at baseline. On administration of αPD-1, αPD-L1 or αCTLA4, the liver Treg population doubled regardless of the presence of an intrahepatic tumour. Remarkably, this change was not due to the preferential expansion of the subpopulation of Tregs that express PD-1. Instead, a subpopulation of CD29+ (Itgb1, integrin ß1) Tregs, that were highly proliferative at baseline, doubled its size in response to αPD-1. Partial and full depletion of Tregs identified CD29+ Tregs as the prominent niche-filling subpopulation in the liver, and CD29+ Tregs demonstrated enhanced suppression in vitro when derived from the liver but not the spleen. We identified IL2 as a critical modulator of both CD29+ and CD29- hepatic Tregs, but expansion of the liver Treg population with αPD-1 driven by CD29+ Tregs was in part IL2-independent. CONCLUSION: We propose that CD29+ Tregs constitute a unique subpopulation of hepatic Tregs that are primed to respond to ICI agents and mediate resistance.


Assuntos
Neoplasias Hepáticas , Linfócitos T Reguladores , Animais , Camundongos , Interleucina-2 , Integrina beta1 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia
4.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595566

RESUMO

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/patologia , Macrófagos Associados a Tumor
5.
Br J Cancer ; 129(4): 696-705, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400680

RESUMO

BACKGROUND: In many situations, the therapeutic efficacy of CAR T cells is limited due to immune suppression and poor persistence. Immunostimulatory fusion protein (IFP) constructs have been advanced as a tool to convert suppressive signals into stimulation and thus promote the persistence of T cells, but no universal IFP design has been established so far. We now took advantage of a PD-1-CD28 IFP as a clinically relevant structure to define key determinants of IFP activity. METHODS: We compared different PD-1-CD28 IFP variants in a human leukemia model to assess the impact of distinctive design choices on CAR T cell performance in vitro and a xenograft mouse model. RESULTS: We observed that IFP constructs that putatively exceed the extracellular length of PD-1 induce T-cell response without CAR target recognition, rendering them unsuitable for tumour-specific therapy. IFP variants with physiological PD-1 length ameliorated CAR T cell effector function and proliferation in response to PD-L1+ tumour cells in vitro and prolonged survival in vivo. Transmembrane or extracellular CD28 domains were found to be replaceable by corresponding PD-1 domains for in vivo efficacy. CONCLUSION: PD-1-CD28 IFP constructs must mimic the physiological interaction of PD-1 with PD-L1 to retain selectivity and mediate CAR-conditional therapeutic activity.


Assuntos
Imunoterapia Adotiva , Leucemia , Humanos , Camundongos , Animais , Antígenos CD28 , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Linhagem Celular Tumoral
6.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208128

RESUMO

BACKGROUND: Melanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens. METHODS: Human as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo. RESULTS: MCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model. CONCLUSION: The SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.


Assuntos
Anticorpos Biespecíficos , Melanoma , Humanos , Camundongos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linfócitos T , Recidiva Local de Neoplasia , Antígenos de Neoplasias
7.
Nat Biotechnol ; 41(11): 1618-1632, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36914885

RESUMO

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Transcriptoma/genética , Linfócitos T , Imunoterapia Adotiva , Linhagem Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral
8.
Br J Cancer ; 127(12): 2175-2185, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36266575

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic response. METHODS: Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was assessed in a syngeneic mouse model of colon carcinoma. RESULTS: We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour cells in vitro and augmented CAR T cell activation in vivo. CONCLUSIONS: Together our results suggest that combination therapy with AB928 represents a promising approach to improve adoptive cell therapy.


Assuntos
Neoplasias , Linfócitos T , Animais , Camundongos , Adenosina/farmacologia , Citocinas , Microambiente Tumoral
9.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35902133

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has proven its clinical utility in hematological malignancies. Optimization is still required for its application in solid tumors. Here, the lack of cancer-specific structures along with tumor heterogeneity represent a critical barrier to safety and efficacy. Modular CAR T cells indirectly binding the tumor antigen through CAR-adaptor molecules have the potential to reduce adverse events and to overcome antigen heterogeneity. We hypothesized that a platform utilizing unique traits of clinical grade antibodies for selective CAR targeting would come with significant advantages. Thus, we developed a P329G-directed CAR targeting the P329G mutation in the Fc part of tumor-targeting human antibodies containing P329G L234A/L235A (LALA) mutations for Fc silencing. METHODS: A single chain variable fragment-based second generation P329G-targeting CAR was retrovirally transduced into primary human T cells. These CAR T cells were combined with IgG1 antibodies carrying P329G LALA mutations in their Fc part targeting epidermal growth factor receptor (EGFR), mesothelin (MSLN) or HER2/neu. Mesothelioma, pancreatic and breast cancer cell lines expressing the respective antigens were used as target cell lines. Efficacy was evaluated in vitro and in vivo in xenograft mouse models. RESULTS: Unlike CD16-CAR T cells, which bind human IgG in a non-selective manner, P329G-targeting CAR T cells revealed specific effector functions only when combined with antibodies carrying P329G LALA mutations in their Fc part. P329G-targeting CAR T cells cannot be activated by an excess of human IgG. P329G-directed CAR T cells combined with a MSLN-targeting P329G-mutated antibody mediated pronounced in vitro and in vivo antitumor efficacy in mesothelioma and pancreatic cancer models. Combined with a HER2-targeting antibody, P329G-targeting CAR T cells showed substantial in vitro activation, proliferation, cytokine production and cytotoxicity against HER2-expressing breast cancer cell lines and induced complete tumor eradication in a breast cancer xenograft mouse model. The ability of the platform to target multiple antigens sequentially was shown in vitro and in vivo. CONCLUSIONS: P329G-targeting CAR T cells combined with antigen-binding human IgG1 antibodies containing the P329G Fc mutation mediate pronounced in vitro and in vivo effector functions in different solid tumor models, warranting further clinical translation of this concept.


Assuntos
Neoplasias da Mama , Mesotelioma , Receptores de Antígenos Quiméricos , Animais , Anticorpos Antineoplásicos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Imunoglobulina G/genética , Mesotelioma/tratamento farmacológico , Camundongos , Linfócitos T
10.
Front Immunol ; 13: 883694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720311

RESUMO

Strategies to boost anti-tumor immunity are urgently needed to treat therapy-resistant late-stage cancers, including colorectal cancers (CRCs). Cytokine stimulation and genetic modifications with chimeric antigen receptors (CAR) represent promising strategies to more specifically redirect anti-tumor activities of effector cells like natural killer (NK) and T cells. However, these approaches are critically dependent on tumor-specific antigens while circumventing the suppressive power of the solid tumor microenvironment and avoiding off-tumor toxicities. Previously, we have shown that the stress-inducible heat shock protein 70 (Hsp70) is frequently and specifically expressed on the cell surface of many different, highly aggressive tumors but not normal tissues. We could take advantage of tumors expressing Hsp70 on their membrane ('mHsp70') to attract and engage NK cells after in vitro stimulation with the 14-mer Hsp70 peptide TKDNNLLGRFELSG (TKD) plus low dose interleukin (IL)-2. However, a potential limitation of activated primary NK cells after adoptive transfer is their comparably short life span. T cells are typically long-lived but do not recognize mHsp70 on tumor cells, even after stimulation with TKD/IL-2. To combine the advantages of mHsp70-specificity with longevity, we constructed a CAR having specificity for mHsp70 and retrovirally transduced it into primary T cells. Co-culture of anti-Hsp70 CAR-transduced T cells with mHsp70-positive tumor cells stimulates their functional responsiveness. Herein, we demonstrated that human CRCs with a high mHsp70 expression similarly attract TKD/IL-2 stimulated NK cells and anti-Hsp70 CAR T cells, triggering the release of their lytic effector protein granzyme B (GrB) and the pro-inflammatory cytokine interferon (IFN)-γ, after 4 and 24 hours, respectively. In sum, stimulated NK cells and anti-Hsp70 CAR T cells demonstrated comparable anti-tumor effects, albeit with somewhat differing kinetics. These findings, together with the fact that mHsp70 is expressed on a large variety of different cancer entities, highlight the potential of TKD/IL-2 pre-stimulated NK, as well as anti-Hsp70 CAR T cells to provide a promising direction in the field of targeted, cell-based immunotherapies which can address significant unmet clinical needs in a wide range of cancer settings.


Assuntos
Interleucina-2 , Neoplasias , Proteínas de Choque Térmico HSP70 , Humanos , Interleucina-2/metabolismo , Células Matadoras Naturais , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos T/metabolismo , Microambiente Tumoral
11.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824159

RESUMO

BACKGROUND: Natural killer (NK) cells require a functional lytic granule machinery to mediate effective antitumor responses. Evading the lytic cargo deployed at the immune synapse (IS) could be a critical step for cancer progression through yet unidentified mechanisms. METHODS: NK cell antibody-dependent cellular cytotoxicity (ADCC) is a major determinant of the clinical efficacy of some therapeutic antibodies including the anti-HER2 Trastuzumab. Thus, we screened sera of Trastuzumab-resistant HER2 +patients with breast cancer for molecules that could inhibit NK cell ADCC. We validated our findings in vitro using cytotoxicity assays and confocal imaging of the lytic granule machinery and in vivo using syngeneic and xenograft murine models. RESULTS: We found that sera from Trastuzumab-refractory patients could inhibit healthy NK cell ADCC in vitro. These sera contained high levels of the inflammatory protein chitinase 3-like 1 (CHI3L1) compared with sera from responders and healthy controls. We demonstrate that recombinant CHI3L1 inhibits both ADCC and innate NK cell cytotoxicity. Mechanistically, CHI3L1 prevents the correct polarization of the microtubule-organizing center along with the lytic granules to the IS by hindering the receptor of advanced glycation end-products and its downstream JNK signaling. In vivo, CHI3L1 administration drastically impairs the control of NK cell-sensitive tumors, while CHI3L1 blockade synergizes with ADCC to cure mice with HER2 +xenografts. CONCLUSION: Our work highlights a new paradigm of tumor immune escape mediated by CHI3L1 which acts on the cytotoxic machinery and prevents granule polarization. Targeting CHI3L1 could mitigate immune escape and potentiate antibody and cell-based immunotherapies.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/genética , Animais , Feminino , Humanos , Camundongos
12.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34083764

RESUMO

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Assuntos
Imunoterapia Adotiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfócitos T , Animais , Terapia Baseada em Transplante de Células e Tecidos , Mesotelina , Camundongos , Neoplasias Pancreáticas/terapia , Receptores de Quimiocinas/genética
13.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108220

RESUMO

CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-ß (TGF-ß). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-ß receptor 2 (DNR) can simultaneously shield them from TGF-ß. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-ß shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/farmacologia
15.
Curr Hematol Malig Rep ; 16(2): 218-233, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33939108

RESUMO

PURPOSE OF REVIEW: Both chimeric antigen receptor (CAR) T cells and T cell-engaging antibodies (BiAb) have been approved for the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limitations of either approach and to combine the best of both worlds. RECENT FINDINGS: By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-tumor on-target effects. BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome some of their limitations, e.g., to make them more controllable.


Assuntos
Anticorpos Biespecíficos/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/genética , Antígenos de Neoplasias/imunologia , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/etiologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
16.
Leukemia ; 35(8): 2243-2257, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33414484

RESUMO

Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia Experimental/terapia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Feminino , Humanos , Leucemia Experimental/imunologia , Leucemia Experimental/patologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Semin Cancer Biol ; 65: 80-90, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31705998

RESUMO

The remarkable success of chimeric antigen receptor (CAR)-engineered T cells in pre-B cell acute lymphoblastic leukemia (ALL) and B cell lymphoma led to the approval of anti-CD19 CAR T cells as the first ever CAR T cell therapy in 2017. However, with the number of CAR T cell-treated patients increasing, observations of tumor escape and resistance to CAR T cell therapy with disease relapse are demonstrating the current limitations of this therapeutic modality. Mechanisms hampering CAR T cell efficiency include limited T cell persistence, caused for example by T cell exhaustion and activation-induced cell death (AICD), as well as therapy-related toxicity. Furthermore, the physical properties, antigen heterogeneity and immunosuppressive capacities of solid tumors have prevented the success of CAR T cells in these entities. Herein we review current obstacles of CAR T cell therapy and propose strategies in order to overcome these hurdles and expand CAR T cell therapy to a broader range of cancer patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia Adotiva/efeitos adversos , Neoplasias/tratamento farmacológico , Receptores de Antígenos Quiméricos/imunologia , Humanos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
18.
Clin Cancer Res ; 25(19): 5890-5900, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31285373

RESUMO

PURPOSE: Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN: BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS: Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS: We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Receptores ErbB/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/genética , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cells ; 8(5)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108883

RESUMO

Cancer therapy has entered a new era, transitioning from unspecific chemotherapeutic agents to increasingly specific immune-based therapeutic strategies. Among these, chimeric antigen receptor (CAR) T cells have shown unparalleled therapeutic potential in treating refractory hematological malignancies. In contrast, solid tumors pose a much greater challenge to CAR T cell therapy, which has yet to be overcome. As this novel therapeutic modality matures, increasing effort is being invested to determine the optimal structure and properties of CARs to facilitate the transition from empirical testing to the rational design of CAR T cells. In this review, we highlight how individual CAR domains contribute to the success and failure of this promising treatment modality and provide an insight into the most notable advances in the field of CAR T cell engineering.


Assuntos
Engenharia Celular/métodos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Antígenos CD8/imunologia , Edição de Genes , Humanos , Domínios Proteicos/imunologia , Anticorpos de Cadeia Única/imunologia , Transgenes , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
20.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875739

RESUMO

Effective adoptive T cell therapy (ACT) comprises the killing of cancer cells through the therapeutic use of transferred T cells. One of the main ACT approaches is chimeric antigen receptor (CAR) T cell therapy. CAR T cells mediate MHC-unrestricted tumor cell killing by enabling T cells to bind target cell surface antigens through a single-chain variable fragment (scFv) recognition domain. Upon engagement, CAR T cells form a non-classical immune synapse (IS), required for their effector function. These cells then mediate their anti-tumoral effects through the perforin and granzyme axis, the Fas and Fas ligand axis, as well as the release of cytokines to sensitize the tumor stroma. Their persistence in the host and functional outputs are tightly dependent on the receptor's individual components-scFv, spacer domain, and costimulatory domains-and how said component functions converge to augment CAR T cell performance. In this review, we bring forth the successes and limitations of CAR T cell therapy. We delve further into the current understanding of how CAR T cells are designed to function, survive, and ultimately mediate their anti-tumoral effects.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Animais , Proteína Ligante Fas/metabolismo , Granzimas/metabolismo , Humanos , Neoplasias/imunologia , Perforina/metabolismo , Transdução de Sinais , Linfócitos T/transplante , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA