RESUMO
The discovery that the bacterial defense mechanism, CRISPR-Cas9, can be reprogrammed as a gene editing tool has revolutionized the field of gene editing. CRISPR-Cas9 can introduce a double-strand break at a specific targeted site within the genome. Subsequent intracellular repair mechanisms repair the double strand break that can either lead to gene knock-out (via the non-homologous end-joining pathway) or specific gene correction in the presence of a DNA template via homology-directed repair. With the latter, pathological mutations can be cut out and repaired. Advances are being made to utilize CRISPR-Cas9 in patients by incorporating its components into non-viral delivery vehicles that will protect them from premature degradation and deliver them to the targeted tissues. Herein, CRISPR-Cas9 can be delivered in the form of three different cargos: plasmid DNA, RNA or a ribonucleoprotein complex (RNP). We and others have recently shown that Cas9 RNP can be efficiently formulated in lipid-nanoparticles (LNP) leading to functional delivery in vitro. In this study, we compared LNP encapsulating the mRNA Cas9, sgRNA and HDR template against LNP containing Cas9-RNP and HDR template. Former showed smaller particle sizes, better protection against degrading enzymes and higher gene editing efficiencies on both reporter HEK293T cells and HEPA 1-6 cells in in vitro assays. Both formulations were additionally tested in female Ai9 mice on biodistribution and gene editing efficiency after systemic administration. LNP delivering mRNA Cas9 were retained mainly in the liver, with LNP delivering Cas9-RNPs additionally found in the spleen and lungs. Finally, gene editing in mice could only be concluded for LNP delivering mRNA Cas9 and sgRNA. These LNPs resulted in 60 % gene knock-out in hepatocytes. Delivery of mRNA Cas9 as cargo format was thereby concluded to surpass Cas9-RNP for application of CRISPR-Cas9 for gene editing in vitro and in vivo.
Assuntos
Edição de Genes , Lipossomos , Nanopartículas , Humanos , Feminino , Camundongos , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , RNA Guia de Sistemas CRISPR-Cas , RNA Mensageiro/genética , Células HEK293 , Distribuição Tecidual , DNARESUMO
There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach. Here, this work uses anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol liposomes with enhanced loading of human proteoglycan-dexamethasone conjugates by cationic lysine tetramer addition. Antigen-pulsed tolerogenic dendritic cells induced by liposomal dexamethasone in vitro enhanced antigen-specific regulatory T cells to a similar extent as dexamethasone-induced tolerogenic dendritic cells. In an inflammatory adoptive transfer model, mice injected with antigen-dexamethasone liposomes have significantly higher antigen-specific type 1 regulatory T cells than mice injected with antigen only. The liposomes significantly inhibit the progression of arthritis compared to controls in preventative and therapeutic proteoglycan-induced arthritis mouse models. This coincides with systemic tolerance induction and an increase in IL10 expression in the paws of mice. In conclusion, a single administration of autoantigen and dexamethasone-loaded liposomes seems to be a promising antigen-specific treatment strategy for arthritis in mice.
Assuntos
Autoantígenos , Células Dendríticas , Dexametasona , Lipossomos , Animais , Lipossomos/química , Dexametasona/química , Dexametasona/farmacologia , Camundongos , Autoantígenos/imunologia , Autoantígenos/química , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Artrite Experimental/imunologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/terapia , Proteoglicanas/química , Proteoglicanas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/terapia , Artrite Reumatoide/induzido quimicamenteRESUMO
The therapeutic potential of antigen-specific regulatory T cells (Treg) has been extensively explored, leading to the development of several tolerogenic vaccines. Dexamethasone-antigen conjugates represent a prominent class of tolerogenic vaccines that enable coordinated delivery of antigen and dexamethasone to target immune cells. The importance of nonspecific albumin association towards the biodistribution of antigen-adjuvant conjugates has gained increasing attention, by which hydrophobic and electrostatic interactions govern the association capacity. Using an ensemble of computational and experimental techniques, we evaluate the impact of charged residues adjacent to the drug conjugation site in dexamethasone-antigen conjugates (Dex-K/E4-OVA323, K: lysine, E: glutamate) towards their albumin association capacity and induction of antigen-specific Treg. We find that Dex-K4-OVA323 possesses a higher albumin association capacity than Dex-E4-OVA323, leading to enhanced liver distribution and antigen-presenting cell uptake. Furthermore, using an OVA323-specific adoptive-transfer mouse model, we show that Dex-K4-OVA323 selectively upregulated OVA323-specific Treg cells, whereas Dex-E4-OVA323 exerted no significant effect on Treg cells. Our findings serve as a guide to optimize the functionality of dexamethasone-antigen conjugate amid switching vaccine epitope sequences. Moreover, our study demonstrates that moderating the residues adjacent to the conjugation sites can serve as an engineering approach for future peptide-drug conjugate development.
Assuntos
Linfócitos T Reguladores , Vacinas , Albuminas , Animais , Antígenos , Dexametasona , Camundongos , Peptídeos , Preparações Farmacêuticas , Distribuição TecidualRESUMO
Autoimmune diseases affect many people worldwide. Current treatment modalities focus on the reduction of disease symptoms using anti-inflammatory drugs which can lead to side effects due to systemic immune suppression. Restoration of immune tolerance by down-regulating auto-reactive cells in an antigen-specific manner is currently the "holy grail" for the treatment of autoimmune diseases. A promising strategy is the use of nanoparticles that can deliver antigens to antigen-presenting cells which in turn can enhance antigen-specific regulatory T cells. In this review, we highlight some promising cell targets (e.g. liver sinusoidal endothelial cells and splenic marginal zone macrophages) for exploiting natural immune tolerance processes, and several strategies by which antigen-carrying nanoparticles can target these cells. We also discuss how nanoparticles carrying immunomodulators may be able to activate tolerance in other antigen-presenting cell types. Finally, we discuss some important aspects that must be taken into account when translating data from animal studies to patients.
Assuntos
Doenças Autoimunes , Nanopartículas , Animais , Células Endoteliais , Humanos , Tolerância Imunológica , Linfócitos T ReguladoresRESUMO
Induction of antigen-specific immune tolerance has emerged as the next frontier in treating autoimmune disorders, including atherosclerosis and graft-vs-host reactions during transplantation. Nanostructures are under investigation as a platform for the coordinated delivery of critical components, i.e., the antigen epitope combined with tolerogenic agents, to the target immune cells and subsequently induce tolerance. In the present study, the utility of supramolecular peptide nanofibers to induce antigen-specific immune tolerance was explored. To study the influence of surface charges of the nanofibers towards the extent of the induced immune response, the flanking charge residues at both ends of the amphipathic fibrillization peptide sequences were varied. Dexamethasone, an immunosuppressive glucocorticoid drug, and the ovalbumin-derived OVA323-339 peptide that binds to I-A(d) MHC Class II were covalently linked at either end of the peptide sequences. It was shown that the functional extensions did not alter the structural integrity of the supramolecular nanofibers. Furthermore, the surface charges of the nanofibers were modulated by the inclusion of charged residues. Dendritic cell culture assays suggested that nanofiber of less negative ζ-potential can augment the antigen-specific tolerogenic response. Our findings illustrate a molecular approach to calibrate the tolerogenic response induced by peptide nanofibers, which pave the way for better design of future tolerogenic immunotherapies.
Assuntos
Nanofibras , Antígenos , Células Dendríticas , Tolerância Imunológica , Imunoterapia , Peptídeos/químicaRESUMO
The current treatment of autoimmune and chronic inflammatory diseases entails systemic immune suppression, which is associated with increased susceptibility to infections. To restore immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic cells (tolDCs) is being explored. tolDCs are characterized by the expression of CD11c, the major histocompatibility complex (MHC)II and low levels of co-stimulatory molecules CD40 and CD86. In this study, tolDCs were generated using a human-proteoglycan-derived peptide (hPG) and all-trans retinoic acid (RA). RA-tolDCs not only display a tolerogenic phenotype but also can induce an antigen-specific regulatory T cell (Treg) response in vitro. However, further analysis showed that RA-tolDCs make up a heterogeneous population of DCs, with only a small proportion being antigen-associated tolDCs. To increase the homogeneity of this population, 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG)-containing liposomes were used to encapsulate the relevant antigen together with RA. These liposomes greatly enhanced the proportion of antigen-associated tolDCs in culture. In addition, in mice, we showed that the liposomal co-delivery of antigen and RA can be a more targeted approach to induce antigen-specific tolerance compared to the injection of RA-tolDCs, and that these liposomes can stimulate the generation of antigen-specific Tregs. This work highlights the importance of the co-delivery of an antigen and immunomodulator to minimize off-target effects and systemic side effects and provides new insights in the use of RA for antigen-specific immunotherapy for autoimmune and chronic inflammatory diseases.
RESUMO
AIMS: CD8+ T cells can differentiate into subpopulations that are characterized by a specific cytokine profile, such as the Tc17 population that produces interleukin-17. The role of this CD8+ T-cell subset in atherosclerosis remains elusive. In this study, we therefore investigated the contribution of Tc17 cells to the development of atherosclerosis. METHODS AND RESULTS: Flow cytometry analysis of atherosclerotic lesions from apolipoprotein E-deficient mice revealed a pronounced increase in RORγt+CD8+ T cells compared to the spleen, indicating a lesion-specific increase in Tc17 cells. To study whether and how the Tc17 subset affects atherosclerosis, we performed an adoptive transfer of Tc17 cells or undifferentiated Tc0 cells into CD8-/- low-density lipoprotein receptor-deficient mice fed a Western-type diet. Using flow cytometry, we showed that Tc17 cells retained a high level of interleukin-17A production in vivo. Moreover, Tc17 cells produced lower levels of interferon-γ than their Tc0 counterparts. Analysis of the aortic root revealed that the transfer of Tc17 cells did not increase atherosclerotic lesion size, in contrast to Tc0-treated mice. CONCLUSION: These findings demonstrate a lesion-localized increase in Tc17 cells in an atherosclerotic mouse model. Tc17 cells appeared to be non-atherogenic, in contrast to their Tc0 counterpart.
Assuntos
Aorta/imunologia , Doenças da Aorta/imunologia , Aterosclerose/imunologia , Linfócitos T CD8-Positivos/imunologia , Interleucina-17/imunologia , Placa Aterosclerótica , Transferência Adotiva , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Transdução de SinaisRESUMO
Atherosclerosis is characterized by the retention of lipids in foam cells in the arterial intima. The liver X receptor (LXR) agonist GW3965 is a promising therapeutic compound, since it induces reverse cholesterol transport in foam cells. However, hepatic LXR activation increases plasma and liver lipid levels, inhibiting its clinical development. Herein, a formulation that specifically enhances GW3965 deposition in the atherosclerotic lesion is aimed to be developed. GW3965 is encapsulated in liposomes functionalized with the cyclic peptide Lyp-1 (CGNKRTRGC), which binds the p32 receptor expressed on foam cells. These liposomes show preferential uptake by foam cells in vitro and higher accumulation in atherosclerotic plaques in mice compared to non-targeted liposomes as determined by in vivo imaging. Flow cytometry analysis of plaques reveals increased retention of Lyp-1 liposomes in atherosclerotic plaque macrophages compared to controls (p < 0.05). Long term treatment of established plaques in LDLR -/- mice with GW3965-containing Lyp-1 liposomes significantly reduces plaque macrophage content by 50% (p < 0.01). Importantly, GW3965-containing Lyp-1 liposomes do not increase plasma or hepatic lipid content. Thus, GW3965-containing Lyp-1 liposomes successfully target the atherosclerotic macrophages allowing plaque stabilization without commonly observed side effects of LXR agonists.
Assuntos
Placa Aterosclerótica , Animais , Benzoatos , Benzilaminas , Lipossomos , Receptores X do Fígado , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Receptores de ComplementoRESUMO
Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigen-specific Treg responses. We hypothesized that altering the rigidity of these liposomes while maintaining their size and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes is affected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part by the presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA323-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of 4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL (1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa), DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG (494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-derived dendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation between liposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responses in vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measure liposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system.
Assuntos
Lipossomos , Linfócitos T Reguladores , Animais , Antígenos , Camundongos , Microscopia de Força Atômica , FosfolipídeosRESUMO
BACKGROUND AND AIMS: CD8+ T-cells have been attributed both atherogenic and atheroprotective properties, but analysis of CD8+ T-cells has mostly been restricted to the circulation and secondary lymphoid organs. The atherosclerotic lesion, however, is a complex microenvironment containing a plethora of inflammatory signals, which may affect CD8+ T-cell activation. Here, we address how this environment affects the functionality of CD8+ T-cells. METHODS AND RESULTS: We compared the cytokine production of CD8+ T-cells derived from spleens and enzymatically digested aortas of apoE-/- mice with advanced atherosclerosis by flow cytometry. Aortic CD8+ T-cells produced decreased amounts of IFN-γ and TNF-α compared to their systemic counterparts. The observed dysfunctional phenotype of the lesion-derived CD8+ T-cells was not associated with classical exhaustion markers, but with increased expression of the ectonucleotidase CD39. Indeed, pharmacological inhibition of CD39 in apoE-/- mice partly restored cytokine production by CD8+ T-cells. Using a bone-marrow transplantation approach, we show that TCR signaling is required to induce CD39 expression on CD8+ T-cells in atherosclerotic lesions. Importantly, analysis of human endarterectomy samples showed a strong microenvironment specific upregulation of CD39 on CD8+ T-cells in the plaques of human patients compared to matched blood samples. CONCLUSIONS: Our results suggest that the continuous TCR signaling in the atherosclerotic environment in the vessel wall induces an immune regulatory CD8+ T-cell phenotype that is associated with decreased cytokine production through increased CD39 expression in both a murine atherosclerotic model and in atherosclerosis patients. This provides a new understanding of immune regulation by CD8+ T-cells in atherosclerosis.
Assuntos
Antígenos CD/fisiologia , Apirase/fisiologia , Aterosclerose/imunologia , Linfócitos T CD8-Positivos/fisiologia , Microambiente Celular/imunologia , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de SinaisRESUMO
AIMS: T lymphocytes play an important role in atherosclerosis development, but the role of the CD8+ T-cell remains debated, especially in the clinically relevant advanced stages of atherosclerosis development. Here, we set out to determine the role of CD8+ T-cells in advanced atherosclerosis. METHODS AND RESULTS: Human endarterectomy samples analysed by flow cytometry showed a negative correlation between the percentage of CD8+ T-cells and macrophages, suggesting a possible protective role for these cells in lesion development. To further test this hypothesis, LDLr-/- mice were fed a western-type diet (WTD) for 10 weeks to induce atherosclerosis, after which they received CD8α-depleting or isotype control antibody for 6 weeks. Depletion of CD8+ T-cells in advanced atherosclerosis resulted in less stable lesions, with significantly reduced collagen content in the trivalve area, increased macrophage content and increased necrotic core area compared with controls. Mechanistically, we observed that CD8 depletion specifically increased the fraction of Th1 CD4+ T-cells in the lesions. Treatment of WTD-fed LDLr-/- mice with a FasL-neutralizing antibody resulted in similar changes in macrophages and CD4+ T-cell skewing as CD8+ T-cell depletion. CONCLUSION: These findings demonstrate for the first time a local, protective role for CD8+ T-cells in advanced atherosclerosis, through limiting accumulation of Th1 cells and macrophages, identifying a novel regulatory mechanism for these cells in atherosclerosis.
Assuntos
Artérias/imunologia , Aterosclerose/imunologia , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular , Macrófagos/imunologia , Placa Aterosclerótica , Células Th1/imunologia , Animais , Artérias/metabolismo , Artérias/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Microambiente Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Knockout para ApoE , Necrose , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Células Th1/metabolismoRESUMO
Atherosclerosis is the predominant underlying pathology of many types of cardiovascular disease and is one of the leading causes of death worldwide. It is characterized by the retention of oxidized low-density lipoprotein (ox-LDL) in lipid-rich macrophages (foam cells) in the intima of arteries. Autoantigens derived from oxLDL can be used to vaccinate against atherosclerosis. However, a major challenge is the induction of antigen-specific Tregs in a safe and effective way. Here we report that liposomes containing the anionic phospholipid 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) induce Tregs that are specific for the liposomes' cargo. Mechanistically, we show a crucial role for the protein corona that forms on the liposomes in the circulation, as uptake of DSPG-liposomes by antigen-presenting cells is mediated via complement component 1q (C1q) and scavenger receptors (SRs). Vaccination of atherosclerotic mice on a western-type diet with DSPG-liposomes encapsulating an LDL-derived peptide antigen significantly reduced plaque formation by 50% and stabilized the plaques, and reduced serum cholesterol concentrations. These results indicate that DSPG-liposomes have potential as a delivery system in vaccination against atherosclerosis.
Assuntos
Aterosclerose/prevenção & controle , Lipossomos/uso terapêutico , Peptídeos/uso terapêutico , Fosfatidilgliceróis/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Aterosclerose/imunologia , Células Cultivadas , Complemento C1q/imunologia , Masculino , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologiaRESUMO
Therapeutic vaccination with synthetic long peptides (SLP) can be clinically effective against HPV-induced premalignant lesions; however, their efficiency in established malignant lesions leaves room for improvement. Here, we report the high therapeutic potency of cationic liposomes loaded with well-defined tumor-specific SLPs and a TLR3 ligand as adjuvant. The cationic particles, with an average size of 160 nm, could strongly activate functional, antigen-specific CD8+ and CD4+ T cells and induced in vivo cytotoxicity against target cells after intradermal vaccination. At a low dose (1 nmol) of SLP, our liposomal formulations significantly controlled tumor outgrowth in two independent models (melanoma and HPV-induced tumors) and even cured 75%-100% of mice of their large established tumors. Cured mice were fully protected from a second challenge with an otherwise lethal dose of tumor cells, indicating the potential of liposomal SLP in the formulation of powerful vaccines for cancer immunotherapy. Cancer Immunol Res; 5(3); 222-33. ©2017 AACR.
Assuntos
Vacinas Anticâncer/imunologia , Lipossomos , Neoplasias/imunologia , Neoplasias/patologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Modelos Animais de Doenças , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunização , Melanoma Experimental , Camundongos , Neoplasias/mortalidade , Neoplasias/terapia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/imunologia , Poli I-C , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Sintéticas/administração & dosagemRESUMO
Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way. It is therefore not surprising that physicochemical characteristics of particulate vaccines, such as particle size, shape, and rigidity, affect multiple processes that impact their immunogenicity. Among these processes are the uptake of the particles from the site of administration, passage through lymphoid tissue and the uptake, antigen processing and activation of antigen-presenting cells. Herein, we systematically review the role of the size, shape and rigidity of particulate vaccines in enhancing and skewing T cell response and attempted to provide a "roadmap" for rational vaccine design.